996 resultados para Spectrophotometer
Resumo:
O objetivo deste trabalho foi avaliar o pH e a densidade óptica das soluções de azul de metileno a 1% e 2% (tamponadas e não tamponadas) após a imersão de três cimentos endodônticos. Foram preparados oitenta espécimes de cada cimento endodôntico (Endofill, AH Plus e Sealapex), os quais foram imersos nas soluções corantes. As soluções foram analisadas antes e após a imersão dos materiais nos períodos de tempo de 0, 24, 48 e 72h. Foram realizadas avaliações do pH utilizando um pHmetro e da densidade óptica utilizando um espectofotômetro ajustado em 596nm. Os dados de pH foram analisados através de estatística descritiva e os dados da densidade óptica foram analisados pela ANOVA e teste de Tukey 5%. Pôde-se verificar que as soluções corantes de azul de metileno tamponadas e não tamponadas apresentaram pequena variação nos valores de pH e densidade óptica antes do contato com os cimentos endodônticos. As soluções corantes não tamponadas apresentaram valores de pH menores que as tamponadas, independentemente do contato com qualquer cimento endodôntico. Os cimentos endodônticos promoveram alterações nos valores de pH das soluções corantes, sendo que as maiores alterações ocorreram nas soluções não tamponadas. Ocorreram alterações nos valores da densidade óptica das soluções corantes tamponadas e não tamponadas nos diferentes períodos de tempo de análise, sendo diferentes para cada cimento endodôntico utilizado
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Objective: This study sought to assess if discoloration of tooth structures occurs after photodynamic therapy (PDT) and to determine the efficacy of a protocol to remove the photosensitizers. Background data: PDT has been used in root canal treatment to enhance cleaning and disinfection of the root canal system. PDT uses a low power laser in association with a dye as a photosensitizer. Photosensitizers can induce staining of the dental structures, resulting in an unaesthetic appearance. Methods: Forty teeth were randomly divided into four groups according to the photosensitizer used and pre-irradiation time: 0.01% methylene blue for 5 min (MB5); 0.01% methylene blue for 10 min (MB 10); 0.01% toluidine blue for 5 min (TB5); and 0.01% toluidine blue for 10 min (TB 10). Specimens were irradiated with a 660 nm diode laser with a 300 mu m diameter optical fiber, at 40 mW power setting for 3 min. Immediately after, the photosensitizers were removed with Endo-PTC cream +2.5% sodium hypochlorite (NaOCl). The shade was measured by a Vita Easyshade spectrophotometer based on the CIELAB color system (L*a*b* values) at three different experimental times: before PDT (T0), immediately after PDT (T1), and after removal of the photosensitizer (T2). Results: The results showed a decrease in the averages of the L*a*b* coordinate values after PDT (T1) in all the groups, when compared with the number at T0, with a significant statistical difference in group MB10. After photosensitizer removal (T2), all the values of the coordinates increased with significant statistical differences (p < 0.05) between T1 and T2 in L* and a*. Conclusions: It can be concluded that both methylene blue and toluidine blue dyes cause tooth discoloration, and that Endo-PTC cream associated with 2.5% NaOCl effectively remove these dyes, regardless of the pre-irradiation time used for PDT.
Resumo:
This paper presents a study of the applicability of adsorption isotherms, known as Langmuir and Freundlich isotherm, between the biosorptive interaction of yeast lyophilized Saccharomyces cerevisiae and textile dyes. To that end, we prepared stock solutions of the textile dyes Direct Red 23 and Direct Red 75 in the concentration of 1.000μg/mL and a yeast suspension at 2,5%. We did experiments for two cases, firstly for the case that we have a fix concentration of yeast at 0,500mg/mL and an variable concentration of dye range from40, 50, 60, 80 and 100μg/mL, then for the case that we fixed the concentration of dye at 100μg/mL and the yeast concentration was variable range from 0,250, 0,500, 0,750, 1,000, 1,250mg/mL. For the dye Direct Red 23 we did analysis in the pH 2,5, 4,5 and 6,5; for the Direct Red 75, we just did for the pH 2,5. We leave the dye solution in contact with the yeast for 2 hours at a constant temperature of 30°C and then centrifuged and analyzed the sample in a spectrophotometer and finally made and analysis of parameters for the removal and study of the isotherms. After the biosorption, was observed that for the Direct Red 23 in the pH 2,5 was needed 1,407mg/mL of yeast for total removal, while for the pH 4,5 was needed 8,806mg/mL and in pH 6,5 was 9,286mg/mL; for the Direct Red 75 in pH 2,5 was needed 1,337mg/mL. This difference can be explain by the adsorption isotherms, was observed that in the case when the yeast was fix when we had in a acid pH the behavior of the system was compatible with the Langmuir isotherm, and thus, an monolayer pattern. And that when we decrease the acidity of the medium the system became more compatible with a Freundlich isotherm, and thus, a multilayer pattern; for the case that the yeast was variable this is not much evident, however for the pH 2,5 she became compatible with a Langmuir isotherm... (Complete abstract click electronic access below)
Resumo:
Petroleum and its subproducts are considered a treat for the environmental quality because of the many environmental accidents that may occur during exploitation, transport and storage. A common remediation technique used in the contaminated areas is based on the use of surfactants, mainly the chemical ones, because they have low production costs. In the other hand, some microorganisms have indicate capacities of producing surfactants that emulsify substances and as result, offer a bigger contact surface for the microbiota degradation. This biossurfactants stand out in comparison with the chemical surfactants because they present lower micelar concentration values, are more tolerant for temperature and pH variation, because they are biodegradable, have low toxicity, higher emulsification and hydrocarbon solubilization index. In this way, after the surfactant application, a toxicity evaluation have to be made to identify the treatment effects. In soil, the activity of some microbial enzymes can show the environmental behavior of the contaminant under different treatment conditions. Dehydrogenase is one example of those enzymes that can demonstrate indirectly the effect of the pollutant on the soil microorganisms. The aim of this paper was to evaluate the toxicity after the addition of a surfactant and/or Pseudomonas aeruginosa LBI in soil contaminated by a mineral automotive lubricant. The previous mentioned bacteria are a potential biossurfactant (rhamnolipid) producer. In order to evaluate the toxicity, the dehydrogenase test was run. In this test, trifeniltetrazolium compound (TTC) after utilized as an electron acceptor, turns into trifenil formazan (TPF), that can be indirectly quantified using the absorbance measured by the spectrophotometer UV-visible. In this way, it was possible to quantify the dehydrogenase activity from the contaminated soil samples... (Complete abstract click electronic access below)
Resumo:
The objective of the present work was to investigate the potential of cyanobacteria isolated from different environments in decolorizing eleven different types of textile dyes. For inoculum preparation 50 ml of BG-11 medium were used for the cyanobacteria Leptolyngbia CENA103, Leptolyngbia CENA104 and Phormidium autumnale UTEX1580 and 50 ml of SWBG-11 medium for Phormidium sp., Leptolyngbya sp. and Synecochoccus sp. Test tubes containing 10 ml of liquid medium and 0.02% of each dye (remazol, indigo blue, indanthrene blue RCL, drimaren blue CL-R, dispersol blue C-2R, drimaren red CL-5B, dispersol red C- 4G, indanthrene red FBB, drimaren yellow CL-R, palanil yellow 3G and indanthrene yellow 5GF) were inoculated with cyanobacteria. A spectrophotometer was used to verify the maximum absorbance of each dye and the percentage of decolorization and also thin layer chromatography (TLC). The results showed that all the tested cyanobacteria were capable to remove more than 50% of some dyes. The present study confirmed the capacity of cyanobacteria in decolorize and possibly degrade structurally different textile dyes, suggesting the possibility of their application in bioremediation studies. The data are promising, and will lead to further studies of dye degradation and its toxicicity.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Engenharia e Ciência de Alimentos - IBILCE
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento em Pesquisa (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The determination of foliar chlorophyll content is a characteristic that interests ecophysiologists and rural producers. With consideration for practical uses as well as scientific publications, our present work aims to establish equations, for rubber tree leaves, that can convert arbitrary units of expressing chlorophyll content to the international system. Chlorophyll a (Chla), chlorophyll b (Chlb), and total chlorophyll (Chltot) were obtained from intact leaves using a portable chlorophyll detecting instrument. Leaves from different positions on the plant, at various stages of maturity, and representing a large spectrum of pigment concentrations, were collected and analyzed in the field using the Clorofil OG Falkner ® instrument, through four evaluations in forty-five medium leaflets. At the laboratory, leaflets underwent a process of pigment extraction. They were incubated in a water-bath with dimethylsulfoxide (DMSO), dosed in molecular absorption spectrophotometer, and converted into pigment content per unit of fresh weight using conventional equations. The data were evaluated according to the Pearson correlation coefficient and tested with different regression models. For all variables, the linear fit is the most adequate, with correlation coefficients (r) 0.74 for Chlb and 0.88 for Chla and Chltott.
Resumo:
The determination of foliar chlorophyll content is a characteristic that interests ecophysiologists and rural producers. With consideration for practical uses as well as scientific publications, our present work aims to establish equations, for rubber tree leaves, that can convert arbitrary units of expressing chlorophyll content to the international system. Chlorophyll a (Chla), chlorophyll b (Chlb), and total chlorophyll (Chltot) were obtained from intact leaves using a portable chlorophyll detecting instrument. Leaves from different positions on the plant, at various stages of maturity, and representing a large spectrum of pigment concentrations, were collected and analyzed in the field using the Clorofil OG Falkner ® instrument, through four evaluations in forty-five medium leaflets. At the laboratory, leaflets underwent a process of pigment extraction. They were incubated in a water-bath with dimethylsulfoxide (DMSO), dosed in molecular absorption spectrophotometer, and converted into pigment content per unit of fresh weight using conventional equations. The data were evaluated according to the Pearson correlation coefficient and tested with different regression models. For all variables, the linear fit is the most adequate, with correlation coefficients (r) 0.74 for Chlb and 0.88 for Chla and Chltott .