993 resultados para Soils - Management


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The sustainability of fast-growing tropical Eucalyptus plantations is of concern in a context of rising fertilizer costs, since large amounts of nutrients are removed with biomass every 6-7 years from highly weathered soils. A better understanding of the dynamics of tree requirements is required to match fertilization regimes to the availability of each nutrient in the soil. The nutrition of Eucalyptus plantations has been intensively investigated and many studies have focused on specific fluxes in the biogeochemical cycles of nutrients. However, studies dealing with complete cycles are scarce for the Tropics. The objective of this paper was to compare these cycles for Eucalyptus plantations in Congo and Brazil, with contrasting climates, soil properties, and management practices. The main features were similar in the two situations. Most nutrient fluxes were driven by crown establishment the two first years after planting and total biomass production thereafter. These forests were characterized by huge nutrient requirements: 155, 10, 52, 55 and 23 kg ha(-1) of N, P, K, Ca and Mg the first year after planting at the Brazilian study site, respectively. High growth rates the first months after planting were essential to take advantage of the large amounts of nutrients released into the soil solutions by organic matter mineralization after harvesting. This study highlighted the predominant role of biological and biochemical cycles over the geochemical cycle of nutrients in tropical Eucalyptus plantations and indicated the prime importance of carefully managing organic matter in these soils. Limited nutrient losses through deep drainage after clear-cutting in the sandy soils of the two study sites showed the remarkable efficiency of Eucalyptus trees in keeping limited nutrient pools within the ecosystem, even after major disturbances. Nutrient input-output budgets suggested that Eucalyptus plantations take advantage of soil fertility inherited from previous land uses and that long-term sustainability will require an increase in the inputs of certain nutrients. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Only 7% of the once extensive forest along the eastern coast of Brazil remains, and much of that is degraded and threatened by agricultural expansion and urbanization. We wondered if methods similar to those developed to establish fast-growing Eucalyptus plantations might also work to enhance survival and growth of rainforest species on degraded pastures composed of highly competitive C(4) grasses. An 8-factor experiment was laid out to contrast the value of different intensities of cultivation, application of fertilizer and weed control on the growth and survival of a mixture of 20 rainforest species planted at two densities: 3 m x 1 m, and 3 m x 2 m. Intensive management increased seedling survival from 90% to 98%, stemwood production and leaf area index (LAI) by similar to 4-fold, and stemwood production per unit of light absorbed by 30%. Annual growth in stem biomass was closely related to LAI alone (r(2) = 0.93, p < 0.0001), and the regression improved further in combination with canopy nitrogen content (r(2) =0.99, p < 0.0001). Intensive management resulted in a nearly closed forest canopy in less than 4 years, and offers a practical means to establish functional forests on abandoned agricultural land. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The evaluations of the effect of the climatic conditions and of the intensity of forest management in the trunk of the Gmelina arborea Linn. Roxb. trees are restricted to its physical-mechanical properties and use. The present work has as objective to study the radial variations of the wood anatomy of the gmelina trees sampled in plantations of 30 sites in Costa Rica, characterized by two climatic conditions (tropical dry and humid) and three intensities of forest management (intensive, moderate and without management). The results of the analyses demonstrated the existence of radial variation of the different anatomical parameters, except for the fiber lumen diameter and multiple vessels in the wood of the gmelina trees. For the wood anatomical elements, fibers (width, lumen diameter, and length), vessels (multiple vessels, diameter and frequency) and radial parenchyma (height) relationships were observed with the climate (tropical humid and dry). The radial variations of the wood anatomical elements were, also, influenced by the management regimes of the gmelina trees.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tropical forests are characterized by diverse assemblages of plant and animal species compared to temperate forests. Corollary to this general rule is that most tree species, whether valued for timber or not, occur at low densities (<1 adult tree ha(-1)) or may be locally rare. In the Brazilian Amazon, many of the most highly valued timber species occur at extremely low densities yet are intensively harvested with little regard for impacts on population structures and dynamics. These include big-leaf mahogany (Swietenia macrophylla), ipe (Tabebuia serratifolia and Tabebuia impetiginosa), jatoba (Hymenaea courbaril), and freijo cinza (Cordia goeldiana). Brazilian forest regulations prohibit harvests of species that meet the legal definition of rare - fewer than three trees per 100 ha - but treat all species populations exceeding this density threshold equally. In this paper we simulate logging impacts on a group of timber species occurring at low densities that are widely distributed across eastern and southern Amazonia, based on field data collected at four research sites since 1997, asking: under current Brazilian forest legislation, what are the prospects for second harvests on 30-year cutting cycles given observed population structures, growth, and mortality rates? Ecologically `rare` species constitute majorities in commercial species assemblages in all but one of the seven large-scale inventories we analyzed from sites spanning the Amazon (range 49-100% of total commercial species). Although densities of only six of 37 study species populations met the Brazilian legal definition of a rare species, timber stocks of five of the six timber species declined substantially at all sites between first and second harvests in simulations based on legally allowable harvest intensities. Reducing species-level harvest intensity by increasing minimum felling diameters or increasing seed tree retention levels improved prospects for second harvests of those populations with a relatively high proportion of submerchantable stems, but did not dramatically improve projections for populations with relatively flat diameter distributions. We argue that restrictions on logging very low-density timber tree populations, such as the current Brazilian standard, provide inadequate minimum protection for vulnerable species. Population declines, even if reduced-impact logging (RIL) is eventually adopted uniformly, can be anticipated for a large pool of high-value timber species unless harvest intensities are adapted to timber species population ecology, and silvicultural treatments are adopted to remedy poor natural stocking in logged stands. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Defoliation by Anticarsia gemmatalis (Hubner), Pseudoplusia includens (Walker), Spodoptera eridania (Cramer), S. cosmioides (Walker) and S. frugiperda (JE Smith) (Lepidoptera: Noctuidae) was evaluated in four soybean genotypes. A multiple-species economic threshold (ET), based upon the species` feeding capacity, is proposed with the aim of improving growers` management decisions on when to initiate control measures for the species complex. RESULTS: Consumption by A. gemmatalis, S. cosmioides or S. eridania on different genotypes was similar. The highest consumption of P. includens was 92.7 cm(2) on Codetec 219RR; that of S. frugiperda was 118 cm(2) on Codetec 219RR and 115.1 cm(2) on MSoy 8787RR. The insect injury equivalent for S. cosmoides, calculated on the basis of insect consumption, was double the standard consumption by A. gemmatalis, and statistically different from the other species tested, which were similar to each other. CONCLUSIONS: As S. cosmioides always defoliated nearly twice the leaf area of the other species, the injury equivalent would be 2 for this lepidopteran species and 1 for the other species. The recommended multiple-species ET to trigger the beginning of insect control would then be 20 insect equivalents per linear metre. (C) 2010 Society of Chemical Industry

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Crop rotation can play a valuable role in managing plant parasitic nematodes, depending on the availability of profitable non-host or poor host crops. Alternatively, non-host cover crops or green manures can be used in succession to summer cash Crops for this Purpose. The aim of the current study was to evaluate, under greenhouse conditions, the host status of commercial hybrids and cultivars of grain and silage sorghum (Sorghum bicolor) for Meloidogyne javanica, and to assess the effect of sorghum on nematode population in comparison with pearl millet (poor host for M. javanica), showy crotalaria and sunn hemp (both non-hosts). Based on two experiments, it was stated that, as a rule, grain sorghum is a poor host for M. javanica, but silage sorghum is a good host. Silage sorghum `BRS 601` was an exception. In other experiments, grain sorghum, pearl millet (Pennisetum glaucum `BN 2`), showy crotalaria (Crotolaria spectabilis `Comum`) and sunn hemp (C. juncea `IAC-KR-1`) reduced M. javanica population level, while silage sorghum increased the nematode density.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Experimental results obtained from a greenhouse trial with common bean (Phaseolus vulgaris L) plants performed to test model hypotheses regarding the onset of limiting hydraulic conditions and the shape of the transpiration reduction curve in the falling rate phase are presented. According to these hypotheses based on simulations with an upscaled single-root model, the matric flux potential at the onset of limiting hydraulic conditions is as a function of root length density and potential transpiration rate, while the relative transpiration in the falling rate phase equals the relative matric flux potential. Transpiration of bean plants in water stressed pots with four different soils was determined daily by weighing and compared to values obtained from non-stressed pots. This procedure allowed determining the onset of the falling rate phase and corresponding soil hydraulic conditions. At the onset of the falling rate phase, the value of matric flux potential M(I) showed to differ in order of magnitude from the model predicted value for three out of four soils. This difference between model and experiment can be explained by the heterogeneity of the root distribution which is not considered by the model. An empirical factor to deal with this heterogeneity should be included in the model to improve predictions. Comparing the predictions of relative transpiration in the falling rate phase using a linear shape with water content, pressure head or matric flux potential, the matric flux potential based reduction function, in agreement with the hypothesis, showed the best performance, while the pressure head based equation resulted in the highest deviations between observed and predicted values of relative transpiration rates. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We derive an analytic expression for the matric flux potential (M) for van Genuchten-Mualem (VGM) type soils which can also be written in terms of a converging infinite series. Considering the first four terms of this series, the accuracy of the approximation was verified by comparing it to values of M estimated by numerical finite difference integration. Using values of the parameters for three soils from different texture classes, the proposed four-term approximation showed an almost perfect match with the numerical solution, except for effective saturations higher than 0.9. Including more terms reduced the discrepancy but also increased the complexity of the equation. The four-term equation can be used for most applications. Cases with special interest in nearly saturated soils should include more terms from the infinite series. A transpiration reduction function for use with the VGM equations is derived by combining the derived expression for M with a root water extraction model. The shape of the resulting reduction function and its dependency on the derivative of the soil hydraulic diffusivity D with respect to the soil water content theta is discussed. Positive and negative values of dD/d theta yield concave and convex or S-shaped reduction functions, respectively. On the basis of three data sets, the hydraulic properties of virtually all soils yield concave reduction curves. Such curves based solely on soil hydraulic properties do not account for the complex interactions between shoot growth, root growth, and water availability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aluminum toxicity is one of the major soil factors limiting root growth in acidic soils. Because of the increase in organic matter content in the upper few centimeters of soils under no-till systems (NTS), most Al in soil solution may be complexed to dissolved organic C (DOC), thus decreasing its bioavailability. The aim of this study was to evaluate the effects of surface liming on Al speciation in soil solution in Brazilian sites under NTS. Field experiments were performed in two regions with contrasting climates and levels of soil acidity: Rondonopolis, Mato Grosso State, on a Rhodic Haplustox, and Ponta Grossa, Parana State, on a Typic Hapludox. The treatments consisted of a control and three lime rates, surface applied to raise the base saturation to 50, 70, and 90%. Soil solution was obtained at soil water equilibrium (1:1 w/w soil/water ratio). The effects of surface liming on soil chemical attributes and on the composition of the soil solution were dependent on weather conditions, time under NTS, and soil weathering. Most Al in soil solution was complexed to DOC, representing about 70 to 80% of the total Al at pH <5.0, and about 30 to 4096 at pH >5.0. Under pH 5.5, the results were closely correlated with the solubility line for amorphous Al. Organic complexes may control Al(3+) release into soil solution at pH <5.5. Results suggest that in areas under NTS for a long period of time, Al toxicity might decrease due to its complexation to high-molecular-weight organic compounds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Soil compaction, reflected by high bulk density, is an environmental degradation process and new technologies are being developed for its detection. Despite the proven efficiency of remote sensing, it has not been widely used for soil density. Our objective was to evaluate the density of two soils: a Typic Quartzpisament (TQ) and a Rhodic Paleudalf (RP), using spectral reflectance obtained by a laboratory spectroradiometer between 450 and 2500 nm. Undisturbed samples were taken at two depths (0-20 and 60-80 cm), and were artificially compacted. Spectral data, obtained before and after compaction, were compared for both wet and dried compacted samples. Results demonstrated that soil density was greater in RP than in TQ at both depths due to its clayey texture. Spectral data detected high density (compacted) from low density (non-compacted) clayey soils under both wet and dry conditions. The detection of density in sandy soils by spectral reflectance was not possible. The intensity of spectral reflectance of high soil bulk density (compacted) samples was higher than for low density (non-compacted) soils due to changes in soil structure and porosity. Dry samples with high bulk density showed differences in the spectral intensity, but not in the absorption features. Wet samples in equal condition had statistically higher reflectance intensity than that of the low soil bulk density (non-compacted), and absorption differences at 1920 nm, which was due to the altered position of the water molecules. Soil line and spectral reflectance used together could detect soil bulk density variations for the clay soil. This technique could assist in the detection of high soil density in the laboratory by providing new soil information.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Agricultural reuse of treated sewage effluent (TSE) is an environmental and economic practice; however, little is known about its effects on the characteristics and microbial function in tropical soils. The effect of surplus irrigation of a pasture with TSE, in a period of 18 months, was investigated, considering the effect of 0% surplus irrigation with TSE as a control. In addition, the experiment consisted of three surplus treatments (25%, 50%, and 100% excess) and a nonirrigated pasture area (SE) to compare the soil microbial community level physiological profiles, using the Biolog method. The TSE application increased the average substrate consumption of the soil microbial community, based on the kinetic parameters of the average well color development curve fitting. There were no significant differences between the levels of surplus irrigation treatments. Surplus TSE pasture irrigation caused minor increases in the physiological status of the soil microbial community but no detectable damage to the pasture or soil.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this study was to evaluate the effect of particle size and concentration of poly(F.-caprolactone) and adipate modified starch blend on mineralization in soils with differing textures, comparing it with polyethylene under the same experimental conditions. Two soil types were used: a Kandiudalfic Eutrudox with a clayey texture and an Arenic Hapludult with a sandy texture. The two different plastic specimens were incorporated in the form of plastic films with three increasing particle sizes and six doses, from 0 to 2.5 mg C g(-1) soil. Each plastic dose was incorporated into 200 g of soil placed in a hermetically closed jar at 28 degrees C, and incubated for a 120-day period to determine CO(2) evolution. Once again it was confirmed that polyethylene is almost non-biodegradable, in contrast to PCL/S, which can be defined as a biodegradable material. Soil texture affected the mineralization kinetics of the plastic specimens, with higher values for the clayey soil. No changes in soil microbial biomass-C or -N were observed by adding polyethylene and PCL/S to the soil. Also, no significant differences were observed on seed emergence and development of rice seedlings (Oryza sativa L.) in plastic modified soil. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

introduction of conservation practices in degraded agricultural land will generally recuperate soil quality, especially by increasing soil organic matter. This aspect of soil organic C (SOC) dynamics under distinct cropping and management systems can be conveniently analyzed with ecosystem models such as the Century Model. In this study, Century was used to simulate SOC stocks in farm fields of the Ibiruba region of north central Rio Grande do Sul state in Southern Brazil. The region, where soils are predominantly Oxisols, was originally covered with subtropical woodlands and grasslands. SOC dynamics was simulated with a general scenario developed with historical data on soil management and cropping systems beginning with the onset of agriculture in 1900. From 1993 to 2050, two contrasting scenarios based on no-tillage soil management were established: the status quo scenario, with crops and agricultural inputs as currently practiced in the region and the high biomass scenario with increased frequency of corn in the cropping system, resulting in about 80% higher biomass addition to soils. Century simulations were in close agreement with SOC stocks measured in 2005 in the Oxisols with finer texture surface horizon originally under woodlands. However, simulations in the Oxisols with loamy surface horizon under woodlands and in the grassland soils were not as accurate. SOC stock decreased from 44% to 50% in fields originally under woodland and from 20% to 27% in fields under grasslands with the introduction of intensive annual grain crops with intensive tillage and harrowing operations. The adoption of conservation practices in the 1980s led to a stabilization of SOC stocks followed by a partial recovery of native stocks. Simulations to 2050 indicate that maintaining status quo would allow SOC stocks to recover from 81% to 86% of the native stocks under woodland and from 80% to 91 % of the native stocks under grasslands. Adoption of a high biomass scenario would result in stocks from 75% to 95% of the original stocks under woodlands and from 89% to 102% in the grasslands by 2050. These simulations outcomes underline the importance of cropping system yielding higher biomass to further increase SOC content in these Oxisols. This application of the Century Model could reproduce general trends of SOC loss and recovery in the Oxisols of the Ibiruba region. Additional calibration and validation should be conducted before extensive usage of Century as a support tool for soil carbon sequestration projects in this and other regions can be recommended. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Fungal Ribosomal Intergenic Spacer Analysis (F-RISA) was used to characterize soil fungal communities from three ecosystems of Araucaria angustifolia from Brazil: a native forest and two replanted forest ecosystems, one of them with a past history of wildfire. The arbuscular mycorrhizal fungi (AMF) infection was evaluated in Araucaria roots of 18-month-old axenic plants previously inoculated with soils collected from those areas in a greenhouse experiment. The principal component analysis of F-RISA profiles showed different soil fungal community between the three studied areas. Sixty three percent of F-RISA fragments amplified in the soil and the substrate samples presented lengths between 500 and 700 bp. The number of Operational Taxonomic Units (OTUs) was 34 for soil and 38 for substrate, however, more fragments were detected in soil (214) than in substrate (163). An in silico F-RISA analysis to compare our data with ITS1-5.8S-ITS2 sequences from NCBI database showed the presence of Ascomycota, Basidiomycota and Glomeromycota among the soil and substrate fungal communities. AMF infection was higher in plants inoculated with soil from the native forest and the replanted forest with wildfire, both presenting similar chemical characteristics but with different disturbance levels. These results indicate that soil chemical composition may influence the soil fungal community structures rather than the anthropogenic or fire disturbances.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Humic substances (HS) from salt marsh soils were characterized and the relationships among HS composition and some geochemical factors were analysed. For this, three salt marshes with the same vegetation cover (Juncus maritimus), but with different geochemical characteristics, were selected. The qualitative characterization of the soil humic acids and fulvic acids was carried out by elemental analysis, FTIR spectroscopy, fluorescence spectroscopy and VACP/MAS (13)C NMR spectroscopy. HS from salt marsh soils under sea rush (Juncus maritimus) displayed some shared characteristics such as low degree of humification, low aromatic content and high proportion of labile compounds, mainly polysaccharides and proteins. However, although the three salt marsh soils under study were covered by the same type of vegetation, the HS showed some important differences. HS composition was found to be determined not only by the nature of the original organic material, but also by environmental factors such as soil texture, redox conditions and tidal influence. In general. an increase in the humification process appeared to be related to aerobic conditions and predominance of sand in the mineral fraction of the soil, while the preservation of labile organic compounds may be associated with low redox potential values and fine soil texture. (C) 2008 Elsevier Ltd. All rights reserved.