933 resultados para Soils, Radioactive substances in
Resumo:
The transport of cations across membranes in higher plants plays an essential role in many physiological processes including mineral nutrition, cell expansion, and the transduction of environmental signals. In higher plants the coordinated expression of transport mechanisms is essential for specialized cellular processes and for adaptation to variable environmental conditions. To understand the molecular basis of cation transport in plant roots, a Triticum aestivum cDNA library was used to complement a yeast mutant deficient in potassium (K+) uptake. Two genes were cloned that complemented the mutant: HKT1 and a novel cDNA described in this report encoding a cation transporter, LCT1 (low-affinity cation transporter). Analysis of the secondary structure of LCT1 suggests that the protein contains 8–10 transmembrane helices and a hydrophilic amino terminus containing sequences enriched in Pro, Ser, Thr, and Glu (PEST). The transporter activity was assayed using radioactive isotopes in yeast cells expressing the cDNA. LCT1 mediated low-affinity uptake of the cations Rb+ and Na+, and possibly allowed Ca2+ but not Zn2+ uptake. LCT1 is expressed in low abundance in wheat roots and leaves. The precise functional role of this cation transporter is not known, although the competitive inhibition of cation uptake by Ca2+ has parallels to whole plant and molecular studies that have shown the important role of Ca2+ in reducing Na+ uptake and ameliorating Na+ toxicity. The structure of this higher plant ion transport protein is unique and contains PEST sequences.
Resumo:
The chemical element krypton, whose principal source is the atmosphere, had a long-lived radioactive content, in the mid-1940s, of less than 5 dpm per liter of krypton. In the late 1940s, this content had risen to values in the range of 100 dpm per liter. It is now some hundred times higher than the late 1940 values. This radioactivity is the result of the dissolving of nuclear fuel for military and civilian purposes, and the release thereby of the fission product krypton-85 (half-life = 10.71 years, fission yield = 0.2%). The present largest emitter of krypton-85 is the French reprocessing plant at Cap-de-la-Hague.
Resumo:
Recentemente, o uso de persulfato em processo de oxidação química in situ em áreas contaminadas por compostos orgânicos ganhou notoriedade. Contudo, a matriz sólida do solo pode interagir com o persulfato, favorecendo a formação de radicais livres, evitando o acesso do oxidante até o contaminante devido a oxidação de compostos reduzidos presentes no solo ou ainda pela alteração das propriedades hidráulicas do solo. Essa pesquisa teve como objetivos avaliar se as interações entre a solução de persulfato com três solos brasileiros poderiam eventualmente interferir sua capacidade de oxidação bem como se a interação entre eles poderia alterar as propriedades hidráulicas do solo. Para isso, foram realizados ensaios de oxidação do Latossolo Vermelho (LV), Latossolo Vermelho Amarelo (LVA) e Neossolo Quartzarênico (NQ) com solução de persulfato (1g/L e 14g/L) por meio de ensaios de batelada, bem como a oxidação do LV por solução de persulfato (9g/L e 14g/L) em colunas indeformadas. Os resultados mostraram que o decaimento do persulfato seguiu modelo de primeira ordem e o consumo do oxidante não foi finito. A maior constante da taxa de reação (kobs) foi observada para o reator com LV. Essa maior interação foi decorrente da diferença na composição mineralógica e área específica. A caulinita, a gibbsita e os óxidos de ferro apresentaram maior interação com o persulfato. A redução do pH da solução dos reatores causou a lixiviação do alumínio e do ferro devido a dissolução dos minerais. O ferro mobilizado pode ter participado como catalisador da reação, favorecendo a formação de radicais livres, mas foi o principal responsável pelo consumo do oxidante. Parte do ferro oxidado pode ter sido precipitado como óxido cristalino favorecendo a obstrução dos poros. Devido à maior relação entre massa de persulfato e massa de solo, a constante kobs obtida no ensaio com coluna foi 23 vezes maior do que a obtida no ensaio de batelada, mesmo utilizando concentração 1,5 vezes menor no ensaio com coluna. Houve redução na condutividade hidráulica do solo e o fluxo da água mostrou-se heterogêneo após a oxidação devido a mudanças na estrutura dos minerais. Para a remediação de áreas com predomínio de solos tropicais, especialmente do LV, pode ocorrer a formação de radicais livres, mas pode haver um consumo acentuado e não finito do oxidante. Verifica-se que o pH da solução não deve ser inferior a 5 afim de evitar a mobilização de metais para a água subterrânea e eventual obstrução dos poros por meio da desagregação dos grãos de argila.
Resumo:
In the chemical textile domain experts have to analyse chemical components and substances that might be harmful for their usage in clothing and textiles. Part of this analysis is performed searching opinions and reports people have expressed concerning these products in the Social Web. However, this type of information on the Internet is not as frequent for this domain as for others, so its detection and classification is difficult and time-consuming. Consequently, problems associated to the use of chemical substances in textiles may not be detected early enough, and could lead to health problems, such as allergies or burns. In this paper, we propose a framework able to detect, retrieve, and classify subjective sentences related to the chemical textile domain, that could be integrated into a wider health surveillance system. We also describe the creation of several datasets with opinions from this domain, the experiments performed using machine learning techniques and different lexical resources such as WordNet, and the evaluation focusing on the sentiment classification, and complaint detection (i.e., negativity). Despite the challenges involved in this domain, our approach obtains promising results with an F-score of 65% for polarity classification and 82% for complaint detection.
Resumo:
The main contribution to the radiological impact from natural radiation received by general population is due to the emission of radon (222Rn). The objective of this project is the study of radon gas as a radioactive element in our buildings (existing and future constructions) to avoid its influence in interior rooms. The proposed methodology reflects different aspects of natural radioactivity in buildings, their sources, their control criteria and regulatory framework; aspects related to the presence of radon in our constructions, entryways, measurement methodology for indoor environmental concentration are studied; other protection solutions and remediation measures in both existing buildings and new construction projects are analyzed. In conclusion, the paper presents previous evaluation tools, the analysis of existing concentration and the choice of the most appropriate mitigation / remediation measures depending on each case, through the establishment of different architectural proposals to plan actions against radon where necessary.
Resumo:
Background/Aims: The simultaneous use of alcohol and cannabis is common among adolescents, but has been little studied. In this study, we examine predictors and consequences of this behavior in a population-based sample of high school students. Method: Self-reports were obtained from students in Quebec (Canada) followed throughout high school (N=6589). Logistic regressions were used to test the association between individual, family, and peerrelated predictors in grades 7–8 and simultaneous alcohol and cannabis use in grade 10, as well as between simultaneous alcohol and cannabis use in grade 10 and experiencing 3 or more substance-related problems of various types (legal, physical, etc.) in grade 11. Results: Most predictors in grades 7–8 were associated with simultaneous alcohol and cannabis use in grade 10. Only variables reflecting early-onset substance use involvement — alcohol intoxication, cannabis use, and drug use by close friend(s) — remained predictive in a multivariate model. Simultaneous alcohol and cannabis use was associated with increased substance-related problems in grade 11, above and beyond baseline problems and the concurrent use of the two substances in separate episodes in grade 10. Conclusions: Simultaneous alcohol and cannabis use 1) is anticipated by multiple psychosocial risk factors which come together with individual and peer substance use in early high school and 2) is independently predictive of subsequent substance-related problems. Providing adolescents with adequate information regarding the potential harm of simultaneous use may be a useful prevention strategy.
Resumo:
Background/Aims: The simultaneous use of alcohol and cannabis is common among adolescents, but has been little studied. In this study, we examine predictors and consequences of this behavior in a population-based sample of high school students. Method: Self-reports were obtained from students in Quebec (Canada) followed throughout high school (N=6589). Logistic regressions were used to test the association between individual, family, and peerrelated predictors in grades 7–8 and simultaneous alcohol and cannabis use in grade 10, as well as between simultaneous alcohol and cannabis use in grade 10 and experiencing 3 or more substance-related problems of various types (legal, physical, etc.) in grade 11. Results: Most predictors in grades 7–8 were associated with simultaneous alcohol and cannabis use in grade 10. Only variables reflecting early-onset substance use involvement — alcohol intoxication, cannabis use, and drug use by close friend(s) — remained predictive in a multivariate model. Simultaneous alcohol and cannabis use was associated with increased substance-related problems in grade 11, above and beyond baseline problems and the concurrent use of the two substances in separate episodes in grade 10. Conclusions: Simultaneous alcohol and cannabis use 1) is anticipated by multiple psychosocial risk factors which come together with individual and peer substance use in early high school and 2) is independently predictive of subsequent substance-related problems. Providing adolescents with adequate information regarding the potential harm of simultaneous use may be a useful prevention strategy.
Resumo:
Polycyclic aromatic hydrocarbons (PAHs) are common environmental contaminants which can be derived from anthropogenic sources, such as combustion and discharges from extraction and transport, and natural processes, including leakage and erosion of fossil carbon. Natural PAH sources contribute, along with biological activities and terrestrial run-off, to the organic carbon content in sediments.The Barents Sea region is far from many anthropogenic sources of PAH, but production and trans-shipment of hydrocarbons is increasing. We present data for polycyclic aromatic hydrocarbon (PAH) concentrations in bottom sediments from 510 stations in the Barents and White Seas, and along the northern coast of Norway.
Resumo:
Includes bibliography.
Resumo:
This search, containing 126 references, was prepared to serve as a guide to the report literature on the design and construction of hot laboratories. These reports are listed alpha-numerically. Articles selected from scientific journals and which appear in the 1951 thru 1959 issues of Nuclear Science Abstracts (NSA) are included. These articles are listed under Published References according to NSA reference number, and therefore chronologically.
Resumo:
"Instruments."
Resumo:
Prepared for Office, Chief of Engineers, U.S. Army, Washington, D.C.
Resumo:
Contract no. AT-(40-1)-2477.
Resumo:
"November 6, 1951."