983 resultados para Soil- landscape relationship


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Agroforestry parklands represent a vast majority of the agricultural landscape under subsistent-oriented farming in semi-arid West Africa. Parklands are characterized by the growth of well- maintained trees (e.g., shea) on cultivated fields as a result of both environmental and human influences. Shea (Vitellaria paradoxa) provides a cultural and economic benefit to the local people of Ghana, especially women. Periods between traditional fallow rotation systems have reduced recently due to agricultural development and a demand for higher production. As a result, shea trees, which regenerate during fallow periods, has decreased over the landscape. The aim of this study was to determine beneficial spatial distributions of V. paradoxa to maintain high yields of staple crops, and how management of V. paradoxa will differ between male and female farmers as a result of farmer based needs and use of shea. Vegetation growth and grain yield of maize (Zea mays) associated with individual trees, clumped trees, and open fields were measured. Soil moisture and light availability were also measured to determine how V. paradoxa affected resource availability of maize in either clumped or scattered distributions of V. paradoxa. As expected, light availability increased as measurement locations moved farther away from all trees. However, soil moisture was actually greater under trees in clumps than under individual trees. Maize stalk height and cob length showed no difference between clumped and single trees at each measurement location. Grain yield per plot and per cob increased as measurement locations moved farther from single trees, but was actually greater near clumped trees that in the open field subplots. Cob length and maize stalk height increased with greater light availability, but grain yield per cob or per plot showed no relationship with light, but were not affected by soil moisture. Conversely, grain yield increased with increasing soil moisture, but had no relationship with light availability. Initial farming capital is the largest constraint to female farmers; therefore the collection of shea can help provide women with added income that could meet their specific farming needs. Our data indicate that overall effects of maintaining clumped distributions of V. paradoxa provided beneficial microclimates for staple crops when compared to single trees. It is recommended that male and female farmers allow shea to grow in clumped spatial distributions rather than maintaining scattered, individual trees.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ungulates are important components of a variety of ecosystems worldwide. This dissertation integrates aspects of ungulate and forest ecology to increase our understanding of how they work together in ways that are of interest to natural resource managers, educators, and those who are simply curious about nature. Although animal ecology and ecosystem ecology are often studied separately, one of the general goals of this dissertation is to examine how they interact across spatial and temporal scales. Forest ecosystems are heterogeneous across a range of scales. Spatial and temporal habitat use patterns of forest ungulates tend to be congregated in patches where food and/or cover are readily available. Ungulates interact with ecosystem processes by selectively foraging on plants and excreting waste products in concentrated patches. Positive feedbacks may develop where these activities increase the value of habitat through soil fertilization or the alteration of plant chemistry and architecture. Heterogeneity in ecosystem processes and plant community structure, observed at both stand and local scales, may be the integrated outcome of feedbacks between ungulate behavior and abiotic resource gradients. The first chapter of this dissertation briefly discusses pertinent background information on ungulate ecology, with a focus on white-tailed deer (Odocoileus virginianus) in the Upper Great Lakes region and moose (Alces acles) in Isle Royale National Park, Michigan, USA. The second chapter demonstrates why ecological context is important for studying ungulate ecology in forest ecosystems. Excluding deer from eastern hemlock (Tsuga canadensis) stands, which deer use primarily as winter cover, resulted in less spatial complexity in soil reactive nitrogen and greater complexity in diffuse light compared to unfenced stands. The spatial patterning of herbaceous-layer cover was more similar to nitrogen where deer were present, and was a combination of nitrogen and light within deer exclosures. This relationship depends on the seasonal timing of deer habitat use because deer fertilize the soil during winter, but leave during the growing season. The third chapter draws upon an eight-year, 39-stand data set of deer fecal pellet counts in hemlock stands to estimate the amount of nitrogen that deer are depositing in hemlock stands each winter. In stands of high winter deer use, deer-excreted nitrogen inputs consistently exceeded those of atmospheric deposition at the stand scale. At the neighborhood scale, deer-excreted nitrogen was often in excess of atmospheric deposition due to the patchy distribution of deer habitat use. Spatial patterns in habitat use were consistent over the eight-year study at both stand and neighborhood scales. The fourth chapter explores how foraging selectivity by moose interacts with an abiotic resource gradient to influence forest structure and composition. Soil depth on Isle Royale varies from east to west according to glacial history. Fir saplings growing in deeper soils on the west side are generally more palatable forage for moose (lower foliar C:N) than those growing in shallower soils on the east side. Therefore, saplings growing in better conditions are less likely to reach the canopy due to moose browsing, and fir is a smaller overstory component on the west side. Lastly, chapter five focuses on issues surrounding eastern hemlock regeneration failure, which is a habitat type that is important to many wildlife species. Increasing hemlock on the landscape is complicated by several factors including disturbance regime and climate change, in addition to the influence of deer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Landscape evolution and surface morphology in mountainous settings are a function of the relative importance between sediment transport processes acting on hillslopes and in channels, modulated by climate variables. The Niesen nappe in the Swiss Penninic Prealps presents a unique setting in which opposite facing flanks host basins underlain by identical lithologies, but contrasting litho-tectonic architectures where lithologies either dip parallel to the topographic slope or in the opposite direction (i.e. dip slope and non-dip slope). The north-western facing Diemtigen flank represents such a dip slope situation and is characterized by a gentle topography, low hillslope gradients, poorly dissected channels, and it hosts large landslides. In contrast, the south-eastern facing Frutigen side can be described as non-dip slope flank with deeply incised bedrock channels, high mean hillslope gradients and high relief topography. Results from morphometric analysis reveal that noticeable differences in morphometric parameters can be related to the contrasts in the relative importance of the internal hillslope-channel system between both valley flanks. While the contrasting dip-orientations of the underlying flysch bedrock has promoted hillslope and channelized processes to contrasting extents and particularly the occurrence of large landslides on the dip slope flank, the flank averaged beryllium-10 (10Be)-derived denudation rates are very similar and range between 0.20 and 0.26 mm yr−1. In addition, our denudation rates offer no direct relationship to basin's slope, area, steepness or concavity index, but reveal a positive correlation to mean basin elevation that we interpret as having been controlled by climatically driven factors such as frost-induced processes and orographic precipitation. Our findings illustrate that while the landscape properties in this part of the northern Alpine border can mainly be related to the tectonic architecture of the underlying bedrock, the denudation rates have a strong orographic control through elevation dependent mean annual temperature and precipitation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The role of Soil Organic Carbon (SOC) in mitigating climate change, indicating soil quality and ecosystem function has created research interested to know the nature of SOC at landscape level. The objective of this study was to examine variation and distribution of SOC in a long-term land management at a watershed and plot level. This study was based on meta-analysis of three case studies and 128 surface soil samples from Ethiopia. Three sites (Gununo, Anjeni and Maybar) were compared after considering two Land Management Categories (LMC) and three types of land uses (LUT) in quasi-experimental design. Shapiro-Wilk tests showed non-normal distribution (p = 0.002, a = 0.05) of the data. SOC median value showed the effect of long-term land management with values of 2.29 and 2.38 g kg-1 for less and better-managed watersheds, respectively. SOC values were 1.7, 2.8 and 2.6 g kg-1 for Crop (CLU), Grass (GLU) and Forest Land Use (FLU), respectively. The rank order for SOC variability was FLU>GLU>CLU. Mann-Whitney U and Kruskal-Wallis test showed a significant difference in the medians and distribution of SOC among the LUT, between soil profiles (p<0.05, confidence interval 95%, a = 0.05) while it is not significant (p>0.05) for LMC. The mean and sum rank of Mann Whitney U and Kruskal Wallis test also showed the difference at watershed and plot level. Using SOC as a predictor, cross-validated correct classification with discriminant analysis showed 46 and 49% for LUT and LMC, respectively. The study showed how to categorize landscapes using SOC with respect to land management for decision-makers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Since European settlement, there has been a dramatic increase in the density, cover and distribution of woody plants in former grassland and open woodland. There is a widespread belief that shrub encroachment is synonymous with declines in ecosystem functions, and often it is associated with landscape degradation or desertification. Indeed, this decline in ecosystem functioning is considered to be driven largely by the presence of the shrubs themselves. This prevailing paradigm has been the basis for an extensive program of shrub removal, based on the view that it is necessary to reinstate the original open woodland or grassland structure from which shrublands are thought to have been derived. We review existing scientific evidence, particularly focussed on eastern Australia, to question the notion that shrub encroachment leads to declines in ecosystem functions. We then summarise this scientific evidence into two conceptual models aimed at optimising landscape management to maximise the services provided by shrub-encroached areas. The first model seeks to reconcile the apparent conflicts between the patch- and landscape-level effects of shrubs. The second model identifies the ecosystem services derived from different stages of shrub encroachment. We also examined six ecosystem services provided by shrublands (biodiversity, soil C, hydrology, nutrient provision, grass growth and soil fertility) by using published and unpublished data. We demonstrated the following: (1) shrub effects on ecosystems are strongly scale-, species- and environment-dependent and, therefore, no standardised management should be applied to every case; (2) overgrazing dampens the generally positive effect of shrubs, leading to the misleading relationship between encroachment and degradation; (3) woody encroachment per se does not hinder any of the functions or services described above, rather it enhances many of them; (4) no single shrub-encroachment state (including grasslands without shrubs) will maximise all services; rather, the provision of ecosystem goods and services by shrublands requires a mixture of different states; and (5) there has been little rigorous assessment of the long-term effectiveness of removal and no evidence that this improves land condition in most cases. Our review provides the basis for an improved, scientifically based understanding and management of shrublands, so as to balance the competing goals of providing functional habitats, maintaining soil processes and sustaining pastoral livelihoods.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Applied landscape ecology is considered to have a limited impact on decision-making. To improve the effectiveness of research, above all, closer cooperation between researchers and nonacademic actors is needed. We argue that a suitable research approach in this context is transdisciplinarity (td). We refer to td as interdisciplinary research that takes place in a complex environment-society context with a strong involvement of non-academic actors during the entire research process. A brief synthesis of a case study focusing on ‘Off-site Effects of Soil Erosion on the Swiss Plateau’ illustrates a promising application of a td approach.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The search for predictions of species diversity across environmental gradients has challenged ecologists for decades. The humped-back model (HBM) suggests that plant diversity peaks at intermediate productivity; at low productivity few species can tolerate the environmental stresses, and at high productivity a few highly competitive species dominate. Over time the HBM has become increasingly controversial, and recent studies claim to have refuted it. Here, by using data from coordinated surveys conducted throughout grasslands worldwide and comprising a wide range of site productivities, we provide evidence in support of the HBM pattern at both global and regional extents. The relationships described here provide a foundation for further research into the local, landscape, and historical factors that maintain biodiversity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Soil carbon (C) storage is a key ecosystem service. Soil C stocks play a vital role in soil fertility and climate regulation, but the factors that control these stocks at regional and national scales are unknown, particularly when their composition and stability are considered. As a result, their mapping relies on either unreliable proxy measures or laborious direct measurements. Using data from an extensive national survey of English grasslands, we show that surface soil (0–7 cm) C stocks in size fractions of varying stability can be predicted at both regional and national scales from plant traits and simple measures of soil and climatic conditions. Soil C stocks in the largest pool, of intermediate particle size (50–250 μm), were best explained by mean annual temperature (MAT), soil pH and soil moisture content. The second largest C pool, highly stable physically and biochemically protected particles (0·45–50 μm), was explained by soil pH and the community abundance-weighted mean (CWM) leaf nitrogen (N) content, with the highest soil C stocks under N-rich vegetation. The C stock in the small active fraction (250–4000 μm) was explained by a wide range of variables: MAT, mean annual precipitation, mean growing season length, soil pH and CWM specific leaf area; stocks were higher under vegetation with thick and/or dense leaves. Testing the models describing these fractions against data from an independent English region indicated moderately strong correlation between predicted and actual values and no systematic bias, with the exception of the active fraction, for which predictions were inaccurate. Synthesis and applications. Validation indicates that readily available climate, soils and plant survey data can be effective in making local- to landscape-scale (1–100 000 km2) soil C stock predictions. Such predictions are a crucial component of effective management strategies to protect C stocks and enhance soil C sequestration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Arctic permafrost landscapes are among the most vulnerable and dynamic landscapes globally, but due to their extent and remoteness most of the landscape changes remain unnoticed. In order to detect disturbances in these areas we developed an automated processing chain for the calculation and analysis of robust trends of key land surface indicators based on the full record of available Landsat TM, ETM +, and OLI data. The methodology was applied to the ~ 29,000 km**2 Lena Delta in Northeast Siberia, where robust trend parameters (slope, confidence intervals of the slope, and intercept) were calculated for Tasseled Cap Greenness, Wetness and Brightness, NDVI, and NDWI, and NDMI based on 204 Landsat scenes for the observation period between 1999 and 2014. The resulting datasets revealed regional greening trends within the Lena Delta with several localized hot-spots of change, particularly in the vicinity of the main river channels. With a 30-m spatial resolution various permafrost-thaw related processes and disturbances, such as thermokarst lake expansion and drainage, fluvial erosion, and coastal changes were detected within the Lena Delta region, many of which have not been noticed or described before. Such hotspots of permafrost change exhibit significantly different trend parameters compared to non-disturbed areas. The processed dataset, which is made freely available through the data archive PANGAEA, will be a useful resource for further process specific analysis by researchers and land managers. With the high level of automation and the use of the freely available Landsat archive data, the workflow is scalable and transferrable to other regions, which should enable the comparison of land surface changes in different permafrost affected regions and help to understand and quantify permafrost landscape dynamics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Soil erosion is a widespread problem in agricultural landscapes, particularly in regions with strong rainfall events. Vegetated field margins can mitigate negative impacts of soil erosion by trapping eroded material. In this data set, we present data of sediment trapped by 12 field margins during the monsoon season of 2013 in an agricultural landscape in the Haean-myun catchment in South Korea. Prior to the beginning of monsoon season, we equipped a total of 12 sites representing three replicates for each of four different types of field margins ("managed flat", "managed steep", "natural flat" and "natural steep") with Astroturf mats with a size of 34 cm x 25 cm (850 cm**2). The mats (n = 15 / site) were installed at three levels: upslope, immediately before the field margin to quantify the sediments that reach it, in the middle of the field margin to quantify the locally trapped sediments, and after the field margin at the downslope edge to quantify the sediments that leave the field margin to the next field or to the stream. Sediment was collected after each rain event until the end of the monsoon season.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The observed long-term decrease in the regional fire activity of Eastern Canada results in excessive accumulation of organic layer on the forest floor of coniferous forests, which may affect climate-growth relationships in canopy trees. To test this hypothesis, we related tree-ring chronologies of black spruce (Picea mariana (Mill.) B.S.P.) to soil organic layer (SOL) depth at the stand scale in the lowland forests of Quebec's Clay Belt. Late-winter and early-spring temperatures and temperature at the end of the previous year's growing season were the major monthly level environmental controls of spruce growth. The effect of SOL on climate-growth relationships was moderate and reversed the association between tree growth and summer aridity from a negative to a positive relationship: trees growing on thin organic layers were thus negatively affected by drought, whereas it was the opposite for sites with deep (>20-30 cm) organic layers. This indicates the development of wetter conditions on sites with thicker SOL. Deep SOL were also associated with an increased frequency of negative growth anomalies (pointer years) in tree-ring chronologies. Our results emphasize the presence of nonlinear growth responses to SOL accumulation, suggesting 20-30 cm as a provisional threshold with respect to the effects of SOL on the climate-growth relationship. Given the current climatic conditions characterized by generally low-fire activity and a trend toward accumulation of SOL, the importance of SOL effects in the black spruce ecosystem is expected to increase in the future.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study describes detailed partitioning of phytomass carbon (C) and soil organic carbon (SOC) for four study areas in discontinuous permafrost terrain, Northeast European Russia. The mean aboveground phytomass C storage is 0.7 kg C/m**2. Estimated landscape SOC storage in the four areas varies between 34.5 and 47.0 kg C/m**2 with LCC (land cover classification) upscaling and 32.5-49.0 kg C/m**2 with soil map upscaling. A nested upscaling approach using a Landsat thematic mapper land cover classification for the surrounding region provides estimates within 5 ± 5% of the local high-resolution estimates. Permafrost peat plateaus hold the majority of total and frozen SOC, especially in the more southern study areas. Burying of SOC through cryoturbation of O- or A-horizons contributes between 1% and 16% (mean 5%) of total landscape SOC. The effect of active layer deepening and thermokarst expansion on SOC remobilization is modeled for one of the four areas. The active layer thickness dynamics from 1980 to 2099 is modeled using a transient spatially distributed permafrost model and lateral expansion of peat plateau thermokarst lakes is simulated using geographic information system analyses. Active layer deepening is expected to increase the proportion of SOC affected by seasonal thawing from 29% to 58%. A lateral expansion of 30 m would increase the amount of SOC stored in thermokarst lakes/fens from 2% to 22% of all SOC. By the end of this century, active layer deepening will likely affect more SOC than thermokarst expansion, but the SOC stores vulnerable to thermokarst are less decomposed.