987 resultados para Soil aggregate stability
Resumo:
The phase transition of Reissner-Nordstrom AdS(4) interacting with a massive charged scalar field has been further revisited. We found exactly one stable and one unstable quasinormal mode region for the scalar field. The two of them are separated by the first marginally stable solution.
Resumo:
We study the stability of D >= 7 asymptotically flat black holes rotating in a single two-plane against tensor-type gravitational perturbations. The extensive search of quasinormal modes for these black holes did not indicate any presence of growing modes, implying the stability of simply rotating Myers-Perry black holes against tensor-type perturbations.
Resumo:
We investigate stability of the D-dimensional Reissner-Nordstrom-anti-de Sitter metrics as solutions of the Einstein-Maxwell equations. We have shown that asymptotically anti-de Sitter (AdS) black holes are dynamically stable for all values of charge and anti-de Sitter radius in D=5,6...11 dimensional space-times. This does not contradict dynamical instability of RNAdS black holes found by Gubser in N=8 gauged supergravity, because the latter instability comes from the tachyon mode of the scalar field, coupled to the system. Asymptotically AdS black holes are known to be thermodynamically unstable for some region of parameters, yet, as we have shown here, they are stable against gravitational perturbations.
Resumo:
We make an extensive study of evolution of gravitational perturbations of D-dimensional black holes in Gauss-Bonnet theory. There is an instability at higher multipoles l and large Gauss-Bonnet coupling alpha for D = 5, 6, which is stabilized at higher D. Although a small negative gap of the effective potential for the scalar type of gravitational perturbations exists for higher D and whatever alpha, it does not lead to any instability.
Resumo:
The objective of this paper is two-fold: firstly, we develop a local and global (in time) well-posedness theory for a system describing the motion of two fluids with different densities under capillary-gravity waves in a deep water flow (namely, a Schrodinger-Benjamin-Ono system) for low-regularity initial data in both periodic and continuous cases; secondly, a family of new periodic traveling waves for the Schrodinger-Benjamin-Ono system is given: by fixing a minimal period we obtain, via the implicit function theorem, a smooth branch of periodic solutions bifurcating a Jacobian elliptic function called dnoidal, and, moreover, we prove that all these periodic traveling waves are nonlinearly stable by perturbations with the same wavelength.
Resumo:
In this paper we establish a method to obtain the stability of periodic travelling-wave solutions for equations of Korteweg-de Vries-type u(t) + u(p)u(x) - Mu(x) = 0, with M being a general pseudodifferential operator and where p >= 1 is an integer. Our approach uses the theory of totally positive operators, the Poisson summation theorem, and the theory of Jacobi elliptic functions. In particular we obtain the stability of a family of periodic travelling waves solutions for the Benjamin Ono equation. The present technique gives a new way to obtain the existence and stability of cnoidal and dnoidal waves solutions associated with the Korteweg-de Vries and modified Korteweg-de Vries equations, respectively. The theory has prospects for the study of periodic travelling-wave solutions of other partial differential equations.
Resumo:
Several microorganisms were isolated from soil/sediment samples of Antarctic Peninsula. The enrichment technique using (RS)-.1-(phenyl) ethanol as a carbon source allowed us to isolate 232 psychrophile/psychrotroph microorganisms. We also evaluated the enzyme activity (oxidoreductases) for enantioselective oxidation reactions, by using derivatives of (RS)-.1-(phenyl) ethanol as substrates. Among the studied microorganisms, 15 psychrophile/psychrotroph strains contain oxidoreductases that catalyze the (S)-.enantiomer oxidation from racemic alcohols to their corresponding ketones. Among the identified microorganisms, Flavobacterium sp. and Arthrobacter sp. showed excellent enzymatic activity. These new bacteria strains were selected for optimization study, in which the (RS)-.1-(4-.methyl-.phenyl) ethanol oxidation was evaluated in several reaction conditions. From these studies, it was observed that Flavobacterium sp. has an excellent enzymatic activity at 10 degrees C and Arthrobacter sp. at 15 and 25 degrees C. We have also determined the growth curves of these bacteria, and both strains showed optimum growth at 25 degrees C, indicating that these bacteria are psychrotroph.
Resumo:
We have investigated the stability, electronic properties, Rayleigh (elastic), and Raman (inelastic) depolarization ratios, infrared and Raman absorption vibrational spectra of fullerenols [C(60)(OH)(n)] with different degrees of hydroxylation by using all-electron density-functional-theory (DFT) methods. Stable arrangements of these molecules were found by means of full geometry optimizations using Becke's three-parameter exchange functional with the Lee, Yang, and Parr correlation functional. This DFT level has been combined with the 6-31G(d,p) Gaussian-type basis set, as a compromise between accuracy and capability to treat highly hydroxylated fullerenes, e.g., C(60)(OH)(36). Thus, the molecular properties of fullerenols were systematically analyzed for structures with n=1, 2, 3, 4, 8, 10, 16, 18, 24, 32, and 36. From the electronic structure analysis of these molecules, we have evidenced an important effect related to the weak chemical reactivity of a possible C(60)(OH)(24) isomer. To investigate Raman scattering and the vibrational spectra of the different fullerenols, frequency calculations are carried out within the harmonic approximation. In this case a systematic study is only performed for n=1-4, 8, 10, 16, 18, and 24. Our results give good agreements with the expected changes in the spectral absorptions due to the hydroxylation of fullerenes.
Resumo:
Agricultural management practices that promote net carbon (C) accumulation in the soil have been considered as an important potential mitigation option to combat global warming. The change in the sugarcane harvesting system, to one which incorporates C into the soil from crop residues, is the focus of this work. The main objective was to assess and discuss the changes in soil organic C stocks caused by the conversion of burnt to unburnt sugarcane harvesting systems in Brazil, when considering the main soils and climates associated with this crop. For this purpose, a dataset was obtained from a literature review of soils under sugarcane in Brazil. Although not necessarily from experimental studies, only paired comparisons were examined, and for each site the dominant soil type, topography and climate were similar. The results show a mean annual C accumulation rate of 1.5 Mg ha-1 year-1 for the surface to 30-cm depth (0.73 and 2.04 Mg ha-1 year-1 for sandy and clay soils, respectively) caused by the conversion from a burnt to an unburnt sugarcane harvesting system. The findings suggest that soil should be included in future studies related to life cycle assessment and C footprint of Brazilian sugarcane ethanol.
Resumo:
No-tillage mulch-based (NTM) cropping systems have been widely adopted by farmers in the Brazilian savanna region (Cerrado biome). We hypothesized that this new type of management should have a profound impact on soil organic carbon (SOC) at regional scale and consequently on climate change mitigation. The objective of this study was thus to quantify the SOC storage potential of NTM in the oxisols of the Cerrado using a synchronic approach that is based on a chronosequence of fields of different years under NTM. The study consisted of three phases: (1) a farm/cropping system survey to identify the main types of NTM systems to be chosen for the chronosequence; (2) a field survey to identify a homogeneous set of situations for the chronosequence and (3) the characterization of the chronosequence to assess the SOC storage potential. The main NTM system practiced by farmers is an annual succession of soybean (Glycine max)or maize (Zea mays) with another cereal crop. This cropping system covers 54% of the total cultivated area in the region. At the regional level, soil organic C concentrations from NTM fields were closely correlated with clay + silt content of the soil (r(2) = 0.64). No significant correlation was observed (r(2) = 0.07), however, between these two variables when we only considered the fields with a clay + silt content in the 500-700 g kg(-1) range. The final chronosequence of NTM fields was therefore based on a subsample of eight fields, within this textural range. The SOC stocks in the 0-30 cm topsoil layer of these selected fields varied between 4.2 and 6.7 kg C m(-2) and increased on average (r(2) = 0.97) with 0.19 kg C m(-2) year(-1). After 12 years of NTM management, SOC stocks were no longer significantly different from the stocks under natural Cerrado vegetation (p < 0.05), whereas a 23-year-old conventionally tilled and cropped field showed SOC stocks that were about 30% below this level. Confirming our hypotheses, this study clearly illustrated the high potential of NTM systems in increasing SOC storage under tropical conditions, and how a synchronic approach may be used to assess efficiently such modification on farmers` fields, identifying and excluding non desirable sources of heterogeneity (management, soils and climate). (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
To test whether plant species influence greenhouse gas production in diverse ecosystems, we measured wet season soil CO(2) and N(2)O fluxes close to similar to 300 large (>35 cm in diameter at breast height (DBH)) trees of 15 species at three clay-rich forest sites in central Amazonia. We found that soil CO(2) fluxes were 38% higher near large trees than at control sites >10 m away from any tree (P < 0.0001). After adjusting for large tree presence, a multiple linear regression of soil temperature, bulk density, and liana DBH explained 19% of remaining CO(2) flux variability. Soil N(2)O fluxes adjacent to Caryocar villosum, Lecythis lurida, Schefflera morototoni, and Manilkara huberi were 84%-196% greater than Erisma uncinatum and Vochysia maxima, both Vochysiaceae. Tree species identity was the most important explanatory factor for N(2)O fluxes, accounting for more than twice the N(2)O flux variability as all other factors combined. Two observations suggest a mechanism for this finding: (1) sugar addition increased N(2)O fluxes near C. villosum twice as much (P < 0.05) as near Vochysiaceae and (2) species mean N(2)O fluxes were strongly negatively correlated with tree growth rate (P = 0.002). These observations imply that through enhanced belowground carbon allocation liana and tree species can stimulate soil CO(2) and N(2)O fluxes (by enhancing denitrification when carbon limits microbial metabolism). Alternatively, low N(2)O fluxes potentially result from strong competition of tree species with microbes for nutrients. Species-specific patterns in CO(2) and N(2)O fluxes demonstrate that plant species can influence soil biogeochemical processes in a diverse tropical forest.
Resumo:
The Cerrado and Amazon regions of Brazil are probably the largest agricultural frontier of the world, and Could be a sink or source for C depending on the net effect of land use change and subsequent management on soil organic C pools. We evaluated the effects of agricultural management systems on soil organic C (SOC) stocks in the Brazilian states of Rondonia and Mato Grosso, and derived regional specific factors for soil C stock change associated with different management systems. We used 50 observations (data points) in this study, including 42 dealing with annual cropping practices and 8 dealing with perennial cropping, and analyzed the data in linear mixed-effect models. No tillage (NT) systems in Cerrado areas increased SOC Storage by 1.08 +/- 0.06 relative to SOC stocks under native conditions, while SOC storage increased by a modest factor of 1.01 +/- 0.17 in Cerradao and Amazon Forest conditions. Full tillage (FT) had negative effect on SOC storage relative to NT, decreasing SOC stocks by a factor of 0.94 +/- 0.04. but did not significantly reduce SOC stocks relative to native levels when adopted in the Cerrado region. Perennial cropping had a minimal impact on SOC stocks, estimated at a factor Value of 0.98 +/- 0.14, suggesting these systems maintain about 98% of the SOC stock found under native vegetation. The results Suggest that NT adoption may be increasing SOC with land use change from native vegetation to cropland management in the Cerrado region of Brazil. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
P>Soil bulk density values are needed to convert organic carbon content to mass of organic carbon per unit area. However, field sampling and measurement of soil bulk density are labour-intensive, costly and tedious. Near-infrared reflectance spectroscopy (NIRS) is a physically non-destructive, rapid, reproducible and low-cost method that characterizes materials according to their reflectance in the near-infrared spectral region. The aim of this paper was to investigate the ability of NIRS to predict soil bulk density and to compare its performance with published pedotransfer functions. The study was carried out on a dataset of 1184 soil samples originating from a reforestation area in the Brazilian Amazon basin, and conventional soil bulk density values were obtained with metallic ""core cylinders"". The results indicate that the modified partial least squares regression used on spectral data is an alternative method for soil bulk density predictions to the published pedotransfer functions tested in this study. The NIRS method presented the closest-to-zero accuracy error (-0.002 g cm-3) and the lowest prediction error (0.13 g cm-3) and the coefficient of variation of the validation sets ranged from 8.1 to 8.9% of the mean reference values. Nevertheless, further research is required to assess the limits and specificities of the NIRS method, but it may have advantages for soil bulk density predictions, especially in environments such as the Amazon forest.
Resumo:
Total soil carbon and chemical attributes under different land uses in the Brazilian savanna. The Brazilian savanna region (Cerrado) is one of the largest cultivated areas of the world. The different land uses in the region can effectively change the quantities of soil organic matter and the cycling of nutrients. I-lie objective of this study was to evaluate the effect of different land use management systems on the relationship between soil organic carbon and the soil chemical attributes of a Red Latosol (Oxisol) under Cerrado in Rio Verde (Goias state). The treatments studied were native vegetation (cerrado), low-productivity pasture, conventional tillage with soybean, and no-tillage with soybean and maize. The smallest values for pH, available P, K, Ca and Mg were observed for the Cerradao treatment, even if the relatively high C levels increased the potential soil cation exchange capacity. The pasture, conventional tillage and no-tillage treatments showed higher K, Ca, Mg, available 13, and S concentrations in the soil. In the areas where soil tillage did not take place and lime and fertilizers were applied superficially, the stratification of the soil organic carbon provides the retention of the elements near to the surface, with significance correlations with the soil chemicals attributes.
Resumo:
No-till (NT) adoption is an essential tool for development of sustainable agricultural systems, and how NT affects the soil organic C (SOC) dynamics is a key component of these systems. The effect of a plow tillage (PT) and NT age chronosequence on SOC concentration and interactions with soil fertility were assessed in a variable charge Oxisol, located in the South Center quadrant of Parana State, Brazil (50 degrees 23`W and 24 degrees 36`S). The chronosequence consisted of the following six sites: (i) native field (NF); (ii) PT of the native field (PNF-1) involving conversion of natural vegetation to cropland; (iii) NT for 10 years (NT-10); (iv) NT for 20 years (NT-20); (v) NT for 22 years (NT-22); and (vi) conventional tillage for 22 years (CT-22) involving PT with one disking after summer harvest and one after winter harvest to 20 cm depth plus two harrow disking. Soil samples were collected from five depths (0-2.5; 2.5-5; 5-10; 10-20; and 20-40 cm) and SOC, pH (in H(2)O and KCl), Delta pH, potential acidity, exchangeable bases, and cation exchangeable capacity (CEC) were measured. An increase in SOC concentration positively affected the pH, the negative charge and the CEC and negatively impacted potential acidity. Regression analyses indicated a close relationship between the SOC concentration and other parameters measured in this study. The regression fitted between SOC concentration and CEC showed a close relationship. There was an increase in negative charge and CEC with increase in SOC concentration: CEC increased by 0.37 cmol(c) kg(-1) for every g of C kg(-1) soil. The ratio of ECEC:SOC was 0.23 cmol(c) kg(-1) for NF and increased to 0.49 cmol(c) kg(-1) for NT-22. The rates of P and K for 0-10 cm depth increased by 9.66 kg ha(-1) yr(-1) and 17.93 kg ha(-1) yr(-1), respectively, with NF as a base line. The data presented support the conclusion that long-term NT is a useful strategy for improving fertility of soils with variable charge. (C) 2008 Elsevier B.V. All rights reserved.