751 resultados para Smart environments
Resumo:
This paper proposes a smart battery charging strategy for Electric Vehicles (EVs) targeting the future smart homes. The proposed strategy consists in regulate the EV battery charging current in function of the total home current, aiming to prevent overcurrent trips in the main switch breaker. Computational and experimental results were obtained under real-time conditions to validate the proposed strategy. For such purpose was adapted a bidirectional EV battery charger prototype to operate in accordance with the aforementioned strategy. The proposed strategy was validated through experimental results obtained both in steady and transient states. The results show the correct operation of the EV battery charger even under heavy load variations.
Resumo:
This paper proposes a multifunctional converter to interface renewable energy sources (e.g., solar photovoltaic panels) and electric vehicles (EVs) with the power grid in smart grids context. This multifunctional converter allows deliver energy from the solar photovoltaic panels to an EV or to the power grid, and exchange energy in bidirectional mode between the EV and the power grid. Using this multifunctional converter are not required multiple conversion stages, as occurs with the traditional solutions, where are necessary two power converters to integrate the solar photovoltaic system in the power grid and also two power converters to integrate an off-board EV battery charger in the power grid (dc-dc and dc-ac power converters in both cases). Taking into account that the energy provided (or delivered) from the power grid in each moment is function of the EV operation mode and also of the energy produced from the solar photovoltaic system, it is possible to define operation strategies and control algorithms in order to increase the energy efficiency of the global system and to improve the power quality of the electrical system. The proposed multifunctional converter allows the operation in four distinct cases: (a) Transfer of energy from the solar photovoltaic system to the power grid; (b) Transfer of energy from the solar photovoltaic system and from the EV to the power grid; (c) Transfer of energy from the solar photovoltaic system to the EV or to the power grid; (d) Transfer of energy between the EV and the power grid. Along the paper are described the system architecture and the control algorithms, and are also presented some computational simulation results for the four aforementioned cases. It is also presented a comparative analysis between the traditional and the proposed solution in terms of operation efficiency and estimated cost of implementation.
Resumo:
Premature degradation of ordinary Portland cement (OPC) concrete infrastructures is a current and serious problem with overwhelming costs amounting to several trillion dollars. The use of concrete surface treatments with waterproofing materials to prevent the access of aggressive substances is an important way of enhancing concrete durability. The most common surface treatments use polymeric resins based on epoxy, silicone (siloxane), acrylics, polyurethanes or polymethacrylate. However, epoxy resins have low resistance to ultraviolet radiation while polyurethanes are sensitive to high alkalinity environments. Geopolymers constitute a group of materials with high resistance to chemical attack that could also be used for coating of concrete infrastructures exposed to harsh chemical environments. This article presents results of an experimental investigation on the resistance to chemical attack (by sulfuric and nitric acid) of several materials: OPC concrete, high performance concrete (HPC), epoxy resin, acrylic painting and a fly ash based geopolymeric mortar. Three types of acids, each with high concentrations of 10%, 20% and 30%, were used to simulate long term degradation by chemical attack. The results show that the epoxy resin had the best resistance to chemical attack, irrespective of the acid type and acid concentration.
Resumo:
BACKGROUND: Lean Production Systems (LPS) have become very popular among manufacturing industries, services and large commercial areas. A LPS must develop and consider a set of work features to bring compatibility with workplace ergonomics, namely at a muscular, cognitive and emotional demands level. OBJECTIVE: Identify the most relevant impacts of the adoption of LPS from the ergonomics point of view and summarizes some possible drawbacks for workplace ergonomics due to a flawed application of the LPS. The impacts identified are focused in four dimensions: work pace, intensity and load; worker motivation, satisfaction and stress; autonomy and participation; and health outcome. This paper also discusses the influence that the work organization model has on workplace ergonomics and on the waste elimination previewed by LPS. METHODS: Literature review focused LPS and its impact on occupational ergonomics conditions, as well as on the Health and Safety of workers. The main focus of this research is on LPS implementations in industrial environments and mainly in manufacturing industry workplaces. This is followed by a discussion including the authors’ experience (and previous research). RESULTS: From the reviewed literature it seems that there is no consensus on how Lean principles affect the workplace ergonomics since most authors found positive (advantages) and negative (disadvantages) impacts. CONCLUSIONS: The negative impacts or disadvantages of LPS implementations reviewed may result from the misunderstanding of the Lean principles. Possibly, they also happen due to partial Lean implementations (when only one or two tools were implemented) that may be effective in a specific work context but not suitable to all possible situations as the principles of LPS should not lead, by definition, to any of the reported drawbacks in terms of workplace ergonomics.
Resumo:
Self-compacting concrete (SCC) demands more studies of durability at higher temperatures when subjected to more aggressive environments in comparison to the conventional vibrated concrete (CC). This work aims at presenting results of durability indicators of SCC and CC, having the same water/binder relations and constituents. The applied methodologies were electrical resistivity, diffusion of chloride ions and accelerated carbonation experiments, among others, such as microstructure study, scanning electron microscope and microtomography experiments. The tests were performed in a research laboratory and at a construction site of the Pernambuco Arena. The obtained results shows that the SCC presents an average electrical resistivity 11.4% higher than CC; the average chloride ions diffusion was 63.3% of the CC; the average accelerated carbonation penetration was 45.8% of the CC; and the average open porosity was 55.6% of the CC. As the results demonstrated, the SCC can be more durable than CC, which contributes to elucidate the aspects related to its durability and consequent prolonged life cycle.
Resumo:
Human activity is very dynamic and subtle, and most physical environments are also highly dynamic and support a vast range of social practices that do not map directly into any immediate ubiquitous computing functionally. Identifying what is valuable to people is very hard and obviously leads to great uncertainty regarding the type of support needed and the type of resources needed to create such support. We have addressed the issues of system development through the adoption of a Crowdsourced software development model [13]. We have designed and developed Anywhere places, an open and flexible system support infrastructure for Ubiquitous Computing that is based on a balanced combination between global services and applications and situated devices. Evaluation, however, is still an open problem. The characteristics of ubiquitous computing environments make their evaluation very complex: there are no globally accepted metrics and it is very difficult to evaluate large-scale and long-term environments in real contexts. In this paper, we describe a first proposal of an hybrid 3D simulated prototype of Anywhere places that combines simulated and real components to generate a mixed reality which can be used to assess the envisaged ubiquitous computing environments [17].
Resumo:
The Internet of Things (IoT) is a concept that can foster the emergence of innovative applications. In order to minimize parents’s concerns about their children’s safety, this paper presents the design of a smart Internet of Things system for identifying dangerous situations. The system will be based on real time collection and analysis of physiological signals monitored by non-invasive and non-intrusive sensors, Frequency IDentification (RFID) tags and a Global Positioning System (GPS) to determine when a child is in danger. The assumption of a state of danger is made taking into account the validation of a certain number of biometric reactions to some specific situations and according to a self-learning algorithm developed for this architecture. The results of the analysis of data collected and the location of the child will be able in real time to child’s care holders in a web application.
Resumo:
Dissertação de Mestrado em Engenharia Informática
Resumo:
Studies on nutritional status and leaf traits were carried out in two tropical tree species Swietenia macrophylla King (mahogany) and Dipetryx odorata Aubl. Willd. (tonka bean) planted under contrasting light environments in Presidente Figueiredo-AM, Brazil. Leaves of S. macrophylla and D. odorata were collected in three year-old trees grown under full sunlight (about 2000 µmol m-2 s-1) and natural shade under a closed canopy of Balsa-wood plantation (Ochroma pyramidale Cav. Ex. Lam.Urb) about 260 µmol m-2 s-1. The parameters analysed were leaf area (LA), leaf dry mass (LDM), specific leaf area (SLA) and leaf nutrient contents. It was observed that, S. macrophylla leaves grown under full sunlight showed LA 35% lower than those grown under shade. In D. odorata leaves these differences in LA were not observed. In addition, it was observed that S. macrophylla shade leaves, for LDM, were 50% smaller than sun leaves, while in D. odorata, there differences were not observed. SLA in S. macrophylla presented that sun leaves were three times smaller than those grown under shade. In D. odorata, no differences were observed. Nutrient contents in S. macrophylla, regardless of their light environments, showed higher contents for P and Ca than those found in D. odorata. The N, K, Fe and Mn contents in S. macrophylla leaves decreased under shade. Finally, we suggest that the decreasing in leaf nutrient contents may have a negative influence on leaf growth. The results demonstrated that the tested hypothesis is true for leaf traits, which D. odorata, late-successional species, showed lower plasticity for leaf traits than Swietenia macrophylla, mid-successional species.
Resumo:
Immersive environments (IE) are being increasingly used in order to perform psychophysical experiments. The versatility in terms of stimuli presentation and control and the less time-consuming procedures are their greatest strengths. However, to ensure that IE results can be generalized to real world scenarios we must first provide evidence that performance in IE is quantitatively indistinguishable from performance in real-world. Our goal was to perceptually validate distance perception for CAVE-like IEs. Participants performed a Frontal Matching Distance Task (Durgin & Li, 2011) in three different conditions: real-world scenario (RWS); photorealistic IE (IEPH) and non-photorealistic IE (IENPH). Underestimation of distance was found across all the conditions, with a significant difference between the three conditions (Wilks’ Lambda = .38, F(2,134)= 110.8, p<.01, significant pairwise differences with p<.01). We found a mean error of 2.3 meters for the RWS, 5 meters for the IEPH, and of 6 meters for the IENPH in a pooled data set of 5 participants. Results indicate that while having a photorealistic IE with perspective and stereoscopic depth cues might not be enough to elicit a real-world performance in distance judgment tasks, nevertheless this type of environment minimizes the discrepancy between simulation and real-world when compared with non-photorealistic IEs.
Resumo:
Students have different ways for learning and processing information. Some students prefer learning through seeing while others prefer learning through listening; some students prefer doing activities while other prefer reflecting.Some students reason logically, while others reason intuitively, etc. Identifying the learning style of each student, and providing learning content based on these styles represents a good method to enhance the learning quality. However, there are no efforts onhow to detect the students’ learning styles in mobile computer supported collaborative learning (MCSCL) environments. We present in this paper new ways for automatically detecting the learning styles of students in MCSCL environments based on the learning style model of Felder-Silverman. The identified learning styles of students could be then stored and used at anytime toassign each one of them to his/her appropriate learning group.
Resumo:
Stress/strain sensors constitute a class of devices with a global ever-growing market thanks to their use in many fields of modern life. They are typically constituted by thin metal foils deposited on flexible supports. However, the low inherent resistivity and limited flexibility of their constituents make them inadequate for several applications, such as measuring large movements in robotic systems and biological tissues. As an alternative to the traditional compounds, in the present work we will show the advantages to employ a smart material, polyaniline (PANI), prepared by an innovative environmentally friendly route, for force/strain sensor applications wherein simple processing, environmental friendliness and sensitivity are particularly required.
Resumo:
Mercury and Lead concentrations obtained by ICP-OAS analysis of human hair from riverside communities along the Orinoco river in the Amazon state (Venezuela) were compared with those from Caracas, Venezuela. Taking into account the characteristics of these two environments and the values of the average concentrations of Mercury and Lead, baselines were established suggesting that gold mining activity near the Orinoco river is responsible for the high levels of Mercury in hair from the Amazon state, whereas automobile activity is responsible for high levels of Lead in hair in Caracas.
Resumo:
Dissertação de mestrado em Human Engineering
Resumo:
Genipap (Genipa americana L., Rubiaceae ) is a native Brazilian species and can be used in the recovery of degraded forest areas or for food supply. In order for the species to reach its potential, production of high quality seedlings is essential. The objective of this study was to evaluate genipap seedlings in protected environments and different substrates. The environments tested were: (1) a greenhouse with polyethylene film in the top, with aluminized screen (Aliminet®) of 50%-shading under this film, and lateral sides covered with 50%-shading nylon net (Sombrite®), (2) a shaded hut, all sides covered with 50%-shading nylon net (Sombrite®), and (3) a nursery shelter, with all lateral sides uncovered and the roof covered with leaves of buriti (Mauritia flexuosa). In these environments the following substrates were tested: 50% cattle manure + 50% cassava foliage, 50% cattle manure + 50% Vida Verde®, 50% cattle manure + 50% vermiculite, and 25% cattle manure + 25% vermiculite + 25% of cassava foliage + 25% Vida Verde®. Because there was no repetition of the growth environment, the effect of environment was examined using statistical procedures for analysis of combined experiments. Within environments a completely randomized design was used with five replications. All substrates are suitable for the formation of genipap seedlings, where the recommended substrates are: 50% cattle manure + 50% cassava foliage and 50% cattle manure + 50% Vida Verde® for the greenhouse and the substrates composed of 50% cattle manure + 50% vermiculite and 25% cattle manure + 25% cassava foliage + 25% Vida Verde®+ 25% vermiculite for the shaded hut. The buriti shelter is not recommended for production of genipap seedlings.