646 resultados para Skeletal muscle fatigue
Resumo:
[EN] Increased skeletal muscle capillary density would be a logical adaptive mechanism to chronic hypoxic exposure. However, animal studies have yielded conflicting results, and human studies are sparse. Neoformation of capillaries is dependent on endothelial growth factors such as vascular endothelial growth factor (VEGF), a known target gene for hypoxia inducible factor 1 (HIF-1). We hypothesised that prolonged exposure to high altitude increases muscle capillary density and that this can be explained by an enhanced HIF-1alpha expression inducing an increase in VEGF expression. We measured mRNA levels and capillary density in muscle biopsies from vastus lateralis obtained in sea level residents (SLR; N=8) before and after 2 and 8 weeks of exposure to 4100 m altitude and in Bolivian Aymara high-altitude natives exposed to approximately 4100 m altitude (HAN; N=7). The expression of HIF-1alpha or VEGF mRNA was not changed with prolonged hypoxic exposure in SLR, and both genes were similarly expressed in SLR and HAN. In SLR, whole body mass, mean muscle fibre area and capillary to muscle fibre ratio remained unchanged during acclimatization. The capillary to fibre ratio was lower in HAN than in SLR (2.4+/-0.1 vs 3.6+/-0.2; P<0.05). In conclusion, human muscle VEGF mRNA expression and capillary density are not significantly increased by 8 weeks of exposure to high altitude and are not increased in Aymara high-altitude natives compared with sea level residents.
Resumo:
[EN] Chronic hypoxia is accompanied by changes in blood and skeletal muscle acid-base control. We hypothesized that the underlying mechanisms include altered protein expression of transport systems and the enzymes involved in lactate, HCO3- and H+ fluxes in skeletal muscle and erythrocytes. Immunoblotting was used to quantify densities of the transport systems and enzymes. Muscle and erythrocyte samples were obtained from eight Danish lowlanders at sea level and after 2 and 8 weeks at 4100 m (Bolivia). For comparison, samples were obtained from eight Bolivian natives. In muscle membranes there were no changes in fibre-type distribution, lactate dehydrogenase isoforms, Na+,K+-pump subunits or in the lactate-H+ co-transporters MCT1 and MCT4. The Na+-H+ exchanger protein NHE1 was elevated by 39 % in natives compared to lowlanders. The Na+-HCO3- co-transporter density in muscle was elevated by 47-69 % after 2 and 8 weeks at altitude. The membrane-bound carbonic anhydrase (CA) IV in muscle increased in the lowlanders by 39 %, whereas CA XIV decreased by 23-47 %. Levels of cytosolic CA II and III in muscle and CA I and II in erythrocytes were unchanged. The erythrocyte lactate-H+ co-transporter MCT1 increased by 230-405 % in lowlanders and was 324 % higher in natives. The erythrocyte inorganic anion exchanger (Cl--HCO3- exchanger AE1) was increased by 149-228 %. In conclusion, chronic hypoxia induces dramatic changes in erythrocyte proteins, but only moderate changes in muscle proteins involved in acid-base control. Together, these changes suggest a hypoxia-induced increase in the capacity for lactate, HCO3- and H+ fluxes from muscle to blood and from blood to erythrocytes.
Resumo:
Due to the growing attention of consumers towards their food, improvement of quality of animal products has become one of the main focus of research. To this aim, the application of modern molecular genetics approaches has been proved extremely useful and effective. This innovative drive includes all livestock species productions, including pork. The Italian pig breeding industry is unique because needs heavy pigs slaughtered at about 160 kg for the production of high quality processed products. For this reason, it requires precise meat quality and carcass characteristics. Two aspects have been considered in this thesis: the application of the transcriptome analysis in post mortem pig muscles as a possible method to evaluate meat quality parameters related to the pre mortem status of the animals, including health, nutrition, welfare, and with potential applications for product traceability (chapters 3 and 4); the study of candidate genes for obesity related traits in order to identify markers associated with fatness in pigs that could be applied to improve carcass quality (chapters 5, 6, and 7). Chapter three addresses the first issue from a methodological point of view. When we considered this issue, it was not obvious that post mortem skeletal muscle could be useful for transcriptomic analysis. Therefore we demonstrated that the quality of RNA extracted from skeletal muscle of pigs sampled at different post mortem intervals (20 minutes, 2 hours, 6 hours, and 24 hours) is good for downstream applications. Degradation occurred starting from 48 h post mortem even if at this time it is still possible to use some RNA products. In the fourth chapter, in order to demonstrate the potential use of RNA obtained up to 24 hours post mortem, we present the results of RNA analysis with the Affymetrix microarray platform that made it possible to assess the level of expression of more of 24000 mRNAs. We did not identify any significant differences between the different post mortem times suggesting that this technique could be applied to retrieve information coming from the transcriptome of skeletal muscle samples not collected just after slaughtering. This study represents the first contribution of this kind applied to pork. In the fifth chapter, we investigated as candidate for fat deposition the TBC1D1 [TBC1 (tre-2/USP6, BUB2, cdc16) gene. This gene is involved in mechanisms regulating energy homeostasis in skeletal muscle and is associated with predisposition to obesity in humans. By resequencing a fragment of the TBC1D1 gene we identified three synonymous mutations localized in exon 2 (g.40A>G, g.151C>T, and g.172T>C) and 2 polymorphisms localized in intron 2 (g.219G>A and g.252G>A). One of these polymorphisms (g.219G>A) was genotyped by high resolution melting (HRM) analysis and PCR-RFLP. Moreover, this gene sequence was mapped by radiation hybrid analysis on porcine chromosome 8. The association study was conducted in 756 performance tested pigs of Italian Large White and Italian Duroc breeds. Significant results were obtained for lean meat content, back fat thickness, visible intermuscular fat and ham weight. In chapter six, a second candidate gene (tribbles homolog 3, TRIB3) is analyzed in a study of association with carcass and meat quality traits. The TRIB3 gene is involved in energy metabolism of skeletal muscle and plays a role as suppressor of adipocyte differentiation. We identified two polymorphisms in the first coding exon of the porcine TRIB3 gene, one is a synonymous SNP (c.132T> C), a second is a missense mutation (c.146C> T, p.P49L). The two polymorphisms appear to be in complete linkage disequilibrium between and within breeds. The in silico analysis of the p.P49L substitution suggests that it might have a functional effect. The association study in about 650 pigs indicates that this marker is associated with back fat thickness in Italian Large White and Italian Duroc breeds in two different experimental designs. This polymorphisms is also associated with lactate content of muscle semimembranosus in Italian Large White pigs. Expression analysis indicated that this gene is transcribed in skeletal muscle and adipose tissue as well as in other tissues. In the seventh chapter, we reported the genotyping results for of 677 SNPs in extreme divergent groups of pigs chosen according to the extreme estimated breeding values for back fat thickness. SNPs were identified by resequencing, literature mining and in silico database mining. analysis, data reported in the literature of 60 candidates genes for obesity. Genotyping was carried out using the GoldenGate (Illumina) platform. Of the analyzed SNPs more that 300 were polymorphic in the genotyped population and had minor allele frequency (MAF) >0.05. Of these SNPs, 65 were associated (P<0.10) with back fat thickness. One of the most significant gene marker was the same TBC1D1 SNPs reported in chapter 5, confirming the role of this gene in fat deposition in pig. These results could be important to better define the pig as a model for human obesity other than for marker assisted selection to improve carcass characteristics.
Resumo:
Skeletal muscle possesses the remarkable capacity to complete a rapid and extensive regeneration, even following severe damage. The regenerative ability of skeletal muscle relies on Satellite Cells (SCs), a population of muscle specific adult stem cells. However, during aging or under several pathological conditions, the ability of skeletal muscle to fully regenerated is compromised. Here, a morphological and molecular study on SCs from patients affected by ALS is described. Moreover, the role of the cell cycle regulator P16Ink4a during skeletal muscle regeneration and aging has been investigated.
Resumo:
Aging is a complex phenomenon that affects organs and tissues at a different rate. With advancing age, the skeletal muscle undergoes a progressive loss of mass and strength, a process known as sarcopenia that leads to a decreased mobility and increased risk of falls and invalidity. On the other side, another organ such as the liver that is endowed with a peculiar regenerative capacity seems to be only marginally affected by aging. Accordingly, clinical data indicate that liver transplantation from aged subjects has, in specific conditions, function and duration comparable to those achievable with grafts of liver from young donors. The molecular mechanisms involved in these peculiar aging patterns are still largely unknown, but it is conceivable that protein degradation machineries might play an important role, as they are responsible for the maintenance of cellular homeostasis. Indeed, it has been suggested that alteration of proteostasis may contribute to the onset and progression of several age-related pathological conditions, including skeletal muscle wasting and sarcopenia, as well as to the aging phenotypes. The ubiquitin-proteasome system (UPS) is one of the most important cellular pathways for intracellular degradation of short-lived as well as damaged proteins. To date, studies on the age-related modifications of proteasomes in liver and skeletal muscle were performed prevalently in rodents, with controversial results, while only preliminary observations have been obtained in human liver and skeletal muscle. In this scenario, we want to investigate and characterize in humans the age-related modifications of proteasomes of these two different organs.
Resumo:
Long-term disturbance of the calcium homeostasis of motor endplates (MEPs) causes necrosis of muscle fibers. The onset of morphological changes in response to this disturbance, particularly in relation to the fiber type, is presently unknown. Omohyoid muscles of mice were incubated for 1-30 minutes in 0.1 mM carbachol, an acetylcholine agonist that causes an inward calcium current. In these muscles, the structural changes of the sarcomeres and the MEP sarcoplasm were evaluated at the light- and electron-microscopic level. Predominantly in type I fibers, carbachol incubation resulted in strong contractures of the sarcomeres underlying the MEPs. Owing to these contractures, the usual beret-like form of the MEP-associated sarcoplasm was deformed into a mushroom-like body. Consequently, the squeezed MEPs partially overlapped the adjacent muscle fiber segments. There are no signs of contractures below the MEPs if muscles were incubated in carbachol in calcium-free Tyrode's solution. Carbachol induced inward calcium current and produced fiber-type-specific contractures. This finding points to differences in the handling of calcium in MEPs. Possible mechanisms for these fiber-type-specific differences caused by carbachol-induced calcium entry are assessed.
Resumo:
Exercise induces a pleiotropic adaptive response in skeletal muscle, largely through peroxisome proliferator-activated receptor coactivator 1 (PGC-1 ). PGC-1 enhances lipid oxidation and thereby provides energy for sustained muscle contraction. Its potential implication in promoting muscle refueling remains unresolved, however. Here, we investigated a possible role of elevated PGC-1 levels in skeletal muscle lipogenesis in vivo and the molecular mechanisms that underlie PGC-1 -mediated de novo lipogenesis. To this end, we studied transgenic mice with physiological overexpression of PGC-1 and human muscle biopsies pre- and post-exercise. We demonstrate that PGC-1 enhances lipogenesis in skeletal muscle through liver X receptor -dependent activation of the fatty acid synthase (FAS) promoter and by increasing FAS activity. Using chromatin immunoprecipitation, we establish a direct interaction between PGC-1 and the liver X receptor-responsive element in the FAS promoter. Moreover, we show for the first time that increased glucose uptake and activation of the pentose phosphate pathway provide substrates for RNA synthesis and cofactors for de novo lipogenesis. Similarly, we observed increased lipogenesis and lipid levels in human muscle biopsies that were obtained post-exercise. Our findings suggest that PGC-1 coordinates lipogenesis, intramyocellular lipid accumulation, and substrate oxidation in exercised skeletal muscle in vivo.
Resumo:
In skeletal muscle of patients with clinically diagnosed statin-associated myopathy, discrete signs of structural damage predominantly localize to the T-tubular region and are suggestive of a calcium leak. The impact of statins on skeletal muscle of non-myopathic patients is not known. We analyzed the expression of selected genes implicated in the molecular regulation of calcium and membrane repair, in lipid homeostasis, myocyte remodeling and mitochondrial function. Microscopic and gene expression analyses were performed using validated TaqMan custom arrays on skeletal muscle biopsies of 72 age-matched subjects who were receiving statin therapy (n = 38), who had discontinued therapy due to statin-associated myopathy (n = 14), and who had never undergone statin treatment (n = 20). In skeletal muscle, obtained from statin-treated, non-myopathic patients, statins caused extensive changes in the expression of genes of the calcium regulatory and the membrane repair machinery, whereas the expression of genes responsible for mitochondrial function or myocyte remodeling was unaffected. Discontinuation of treatment due to myopathic symptoms led to a normalization of gene expression levels, the genes encoding the ryanodine receptor 3, calpain 3, and dystrophin being the most notable exceptions. Hence, even in clinically asymptomatic (non-myopathic) patients, statin therapy leads to an upregulation in the expression of genes that are concerned with skeletal muscle regulation and membrane repair.
Resumo:
Use of norepinephrine to increase blood pressure in septic animals has been associated with increased efficiency of hepatic mitochondrial respiration. The aim of this study was to evaluate whether the same effect could be reproduced in isolated hepatic mitochondria after prolonged in vivo exposure to faecal peritonitis. Eighteen pigs were randomized to 27 h of faecal peritonitis and to a control condition (n = 9 each group). At the end, hepatic mitochondria were isolated and incubated for one hour with either norepinephrine or placebo, with and without pretreatment with the specific receptor antagonists prazosin and yohimbine. Mitochondrial state 3 and state 4 respiration were measured for respiratory chain complexes I and II, and state 3 for complex IV using high-resolution respirometry, and respiratory control ratios were calculated. Additionally, skeletal muscle mitochondrial respiration was evaluated after incubation with norepinephrine and dobutamine with and without the respective antagonists (atenolol, propranolol and phentolamine for dobutamine). Faecal peritonitis was characterized by decreasing blood pressure and stroke volume, and maintained systemic oxygen consumption. Neither faecal peritonitis nor any of the drugs or drug combinations had measurable effects on hepatic or skeletal muscle mitochondrial respiration. Norepinephrine did not improve the efficiency of complex I- and complex II-dependent isolated hepatic mitochondrial respiration [respiratory control ratio (RCR) complex I: 5.6 ± 5.3 (placebo) vs. 5.4 ± 4.6 (norepinephrine) in controls and 2.7 ± 2.1 (placebo) vs. 2.9 ± 1.5 (norepinephrine) in septic animals; RCR complex II: 3.5 ± 2.0 (placebo) vs. 3.5 ± 1.8 (norepinephrine) in controls; 2.3 ± 1.6 (placebo) vs. 2.2 ± 1.1 (norepinephrine) in septic animals]. Prolonged faecal peritonitis did not affect either hepatic or skeletal muscle mitochondrial respiration. Subsequent incubation of isolated mitochondria with norepinephrine and dobutamine did not significantly influence their respiration.
Resumo:
The contribution of neuronal nitric oxide synthase (nNOS) to angiogenesis in human skeletal muscle after endurance exercise is controversially discussed. We therefore ascertained whether the expression of nNOS is associated with the capillary density in biopsies of the vastus lateralis (VL) muscle that had been derived from 10 sedentary male subjects before and after moderate training (four 30-min weekly jogging sessions for 6 months, with a heart-rate corresponding to 75% VO(2)max). In these biopsies, nNOS was predominantly expressed as alpha-isoform with exon-mu and to a lesser extent without exon-mu, as determined by RT-PCR. The mRNA levels of nNOS were quantified by real-time PCR and related to the capillary-to-fibre ratio and the numerical density of capillaries specified by light microscopy. If the VL biopsies of all subjects were co-analysed, mRNA levels of nNOS were non-significantly elevated after training (+34%; P > 0.05). However, only five of the ten subjects exhibited significant (P ≤ 0.05) elevations in the capillary-to-fibre ratio (+25%) and the numerical density of capillaries (+21%) and were thus undergoing angiogenesis. If the VL biopsies of these five subjects alone were evaluated, the mRNA levels of nNOS were significantly up-regulated (+128%; P ≤ 0.05) and correlated positively (r = 0.8; P ≤ 0.01) to angiogenesis. Accordingly, nNOS protein expression in VL biopsies quantified by immunoblotting was significantly increased (+82%; P ≤ 0.05) only in those subjects that underwent angiogenesis. In conclusion, the expression of nNOS at mRNA and protein levels was statistically linked to capillarity after exercise suggesting that nNOS is involved in the angiogenic response to training in human skeletal muscle.
Acclimatization of skeletal muscle mitochondria to high-altitude hypoxia during an axcent of Everest
Resumo:
Although magnetic resonance spectroscopy can be used as a unique tool to study molecular diffusion, it is rarely used to measure the diffusion properties of intramyocellular and extramyocellular lipids. Lipids have very low apparent diffusion coefficients (ADCs), which make these measurements difficult and necessitate strong diffusion gradients and long diffusion times. Consequence is that these measurements have inherently low signal-to-noise ratio and are prone to artifacts. The addition of physiological triggering and individual storage and processing of the spectra is seen to be a possible approach to maximize signal intensity and achieve high reproducibility of the experiments. Thus, the optimized measurement protocol was used to investigate the diffusion properties of lipids in human skeletal muscle in vivo. At a diffusion time of about 110 ms, intramyocellular lipids show a significantly lower ADC (2.0 × 10(-6) mm(2)/s, 95% confidence interval 1.10 × 10(-6) to 2.94 × 10(-6) mm(2)/s) than extramyocellular lipids (1.58 × 10(-5) mm(2)/s, 95% confidence interval 1.41 × 10(-5) to 1.75 × 10(-5) mm(2)/s). Because the chemical properties of both lipid pools can be assumed to be similar, the difference can only be attributed to restricted or severely hindered diffusion in the intramyocellular droplets.
Resumo:
Aim of the study was to determine distribution and depletion patterns of intramyocellular lipids (IMCL) in leg muscles before and after two types of standardized endurance exercise. ¹H-magnetic resonance spectroscopic imaging was performed (1) in the thigh of eight-trained cyclists after exercising on an ergometer for 3 h at 52 ± 8% of maximal speed and (2) in the lower leg of eight-trained runners after exercising on a treadmill for 3 h at 49 ± 3% of maximal workload. Pre-exercise IMCL contents were reduced postexercise in 11 out of 13 investigated upper and lower leg muscles (P < 0.015 for all). A strong linear correlation with a slope of ∼0.5 between pre-exercise IMCL content and IMCL depletion was found. IMCL depletion differed strongly between muscles. Absolute and also relative IMCL reduction was significantly higher in muscles with predominantly slow fibers compared to those with fast fibers. Creatine levels and fiber orientation were stable and unchanged after exercise, while trimethyl-ammonium groups increased. This is presented in the accompanying paper. In conclusion, a systematic comparison of metabolic changes in cross sections of the upper and lower leg was performed. The results imply that pre-exercise IMCL levels determine the degree of IMCL depletion after exercise.
Resumo:
Carnitine (Car) buffers excess acetyl-CoA through the formation of acetylCar (AcCar). AcCar's acetyl group (AG-AcCar) gives rise to a peak at 2.13 ppm in ¹H MR spectra of skeletal muscle, whereas the trimethylammonium (TMA) groups of both, AcCar and Car, are thought to contribute to the TMA peak at 3.23 ppm. Surprisingly, in previous studies both resonances, AG-AcCar and TMA, increased after exercise. The aim of this study was to assess if the exercise-related TMA increase correlated with AcCar production. Magnetic resonance spectroscopic imaging (pulse repetition time/echo time = 1200/35 ms) was performed before and after prolonged exercise in the lower leg and thigh of eight runners and eight cyclists, respectively. TMA and AG-AcCar increased after exercise (P < 0.001). TMA's increase correlated with the AG-AcCar increase (R² = 0.73, P < 0.001, lower leg; R² = 0.28, P < 0.001, thigh). The correlation of ΔTMA with ΔAG-AcCar suggests that the TMA increase is due to AcCar formation. As total Car (Car + AcCar) remains unchanged with exercise, these findings suggest that the contribution of free Car to the TMA peak is limited and, therefore, is partly invisible in muscle ¹H MR spectra. This indicates that the biochemically relevant cytosolic content of free Car is considerably lower than the overall concentration determined by radioisotopic assays, a potentially important result with respect to regulation of substrate oxidation.