966 resultados para Sio2
Resumo:
This paper describes the use of ellipsometry as a precise and accurate technique for characterizing substrates and overlayers. A brief historical development of ellipsometry and the basic principles necessary to understand how an ellipsometer works are presented. There are many examples of studies performed in addressing materials science issues, and several are presented here: measurements of thickness, optical properties, and modeling of surface roughness. These selected results obtained in our laboratory for substrates, Si/SiO2 interfaces, and polymers provide evidence that ellipsometry can play a critical role in characterizing different types of materials.
Resumo:
Bottom ash has been used as raw material to glass and glass ceramic production because it is a source of SiO2 and Al2O3. However, the high concentration of iron (about 10% wt.) difficulty the control of the nucleation and the crystallization processes. The iron content was reduced by magnetic process, where the magnetite phase was mainly removed. In order to compare glass ceramics obtained from original and low iron bottom ashes, microstructural and dilatometric characterizations were performed.
Resumo:
In the present work electroluminescence in Si-SiO2 structures has been investigated. Electroluminescence has been recorded in the range of 250-900 nm in a system of electrolyte-insulator-semiconductor at the room temperature. The heating process of electrons in SiO2 was studied and possibility of separation it into two phases has been shown. The nature of luminescence centers and the model of its formation were proposed. This paper also includes consideration of oxide layer formation. Charge transfer mechanisms have been attended as well. The nature of electroluminescence is understood in detail. As a matter of fact, electron traps in silicon are the centers of luminescence. Electroluminescence occurs when electrons move from one trap to another. Thus the radiation of light quantum occurs. These traps appear as a result of the oxide growth. At the same time the bonds deformation of silicon atoms with SiOH groups is not excludes. As a result, dangling bonds are appeared, which are the trapping centers or the centers of luminescence.
Resumo:
This work presents a study on the dissolution of some commercial monometallic and non-supported deactivated catalysts in HF + H2O2 mixtures (and, eventually, other media) under mild experimental conditions, after a previous oxidation step. The samples were neither crushed nor grinded. The best experimental conditions were dependent on the nature of the support and of the active phase. For example, the Pt/Al2O3 catalyst was dissolved in about 10 minutes, without agitation and heating; however, dissolution of the Pd/Al2O3, Ni/Al2O3, Ni/SiO2, Cu/Al2O3 and V2O5 samples required a temperature of 60 ºC and an agitation of 400 rpm. A careful addition of a NaOH solution allowed a quantitative precipitation of aluminium as criolite (Na3AlF6) or precipitation of Si as Na2SiF6; NaF was obtained as a by-product. As expected, processing of Pd/C, V2O5 and CuO.Cr2O3 samples was relatively simple. Metals recovery from catalysts reached a quantitative level in all samples studied; it is particularly interesting that platinum and palladium could be easily recovered in a single step process, thus separing them from aluminium.
Resumo:
Pyro and hydrometallurgical processes were applied to the treatment of spent commercial zeolites (a molecular sieve and a ZSM-5 sample). Both catalysts were employed in pilot plant units. They were kept in their original shape, they were not regenerated and were not subjected neither to mechanical stress nor to overheating zones during their time on-stream. Two recycling processes were tested: (i) direct solubilization of samples in mixtures of HF + H2O2 (60 ºC, 1 h). Although silicon was solubilized, insoluble matter was found in both samples, particularly in the molecular sieve, due to its high amounts of alkaline and alkaline-earth metals; (ii) fusion with KHSO4 (5 h, 600 ºC) with KHSO4/zeolite mass ratio 6:1. After fusion the solid was solubilized in water (100 ºC), leaving silicon as SiO2 residue. In both processes, solubilized metals were isolated by conventional selective precipitation techniques. Analysis of final products by common analytical methods shows that metals present in the original catalysts were recovered with very high yields except when the molecular sieve was treated with HF + H2O2. This reactant mixture proved to be suitable for processing zeolites with a low alkaline and alkaline-earth metal content whereas fusion with KHSO4 appeared to be adequate for all types of zeolites.
Resumo:
This work presents a study on the determination of the optimal experimental conditions for processing spent commercial zeolites in order to recover lanthanide elements and eventually other elements. The process is based on the fusion of the sample with potassium hydrogenosulfate (KHSO4). Three experimental parameters were studied: temperature, reaction time and catalyst/flux mass ratio. After fusion the solid was dissolved in water and the amount of insoluble matter was used to determine the efficiency of the process. The optimized experimental parameters depend on the composition of the sample processed. Under such conditions the insoluble residue corresponds to SiO2. Lanthanide elements and aluminum present in solution were isolated by conventional precipitation techniques; the yields were at least 75 wt%. The final generated wastes correspond to neutral colorless solutions containing alkali chlorides/sulfates and solids that can be disposed of in industrial dumps.
Resumo:
Biogenic silica is used to describe compounds of hydrated silica (SiO2.nH2O), with specific shapes and sizes, deposited in plants. The chemical composition of biogenic silica and its stability in Jaraguá grass was studied in increasing concentration of NaOH. The analytical results demonstrated high concentration of Si, Al, Fe, Mg, P and low of Cu, Cd and Zn in the phytoliths composition. The silica bodies stability in NaOH solution with increasing concentration was different among the shapes and sizes. Silicified stomata and silicified plant tissues were dissolved along with the dumbbells because they are the less stable forms of biogenic silica.
Resumo:
This study compared properties of silica (SiO2) from rice husk (RH) and rice husk ash (RHA) extracted by acid- and heat-treatment. The SiO2 from RH was in amorphous phase with nearly 100% purity while that from RHA was in crystalline phase with 97.56% purity. Both extracted SiO2 were used in the synthesis of zeolite NaY but that from RH was better due to the efficiency in product recovery and simplicity of extraction. After the NaY was exchanged to NH4Y and calcined to convert to HY, the product did not carry over the textural properties of the parent NaY and NH4Y.
Resumo:
Ion exchange method was employed by means of surface modification of the glass powders of LZSA (Li2O-ZrO2-SiO2-Al2O3) system submitted to a 70wt% NaNO3/30wt% NaSO4 bath salt followed by a heat treatment. Chemical analysis by X-ray fluorescence was used to evaluate the efficiency of ion exchange, while optical dilatometry was employed to evaluate sintering of compacts. Evaluation of the structure of sintered bodies was made by scanning electron microscopy. Substitution of Li+ ions by Na+ ions on the surface of powders during heat treatments of 450 and 600 ºC for 2-10 h promoted an increase in densification of the sintered bodies.
Resumo:
Catalyst based on Kegging-type heteropolyacids (H3PW12O40 - HPA), supported on SiO2 (H3PW), were prepared by the impregnation method under different thermal treatment conditions. The materials were characterized by different instrumental techniques and used as catalysts in the methyl esterification reactions of stearic acid. Using the catalyst with 15% of HPA, conversions higher than 60% were obtained after 2 h of reaction at 65 ºC. Recovery studies using hot-filtration with ethanol at 75 ºC showed satisfactory activity for two additional reaction cycles.
Resumo:
This study assesses the adsorption of Pb(II) on natural kaolin waste (KRnatural) and on that treated with 3 mol L-1 H2SO4 and HCl. Equilibrium and thermodynamic parameters were determined. The results indicate that the values of CEC, specific area and SiO2/Al2O3 ratio (4.6-6.0 cmol kg-1, 14.0-16.0 m² g-1 and 1.16-1.30, respectively) vary only slightly for the adsorbents; the concentration of Pb2+ is much higher than that of other species (PbOH+ and Pb(OH)2). The values of R L, ΔGº, ΔHº and ΔSº are typical of feasible, spontaneous, exothermic and ordered adsorption. The chemisorption on KRnatural is more feasible and ordered.
Resumo:
Condensation reactions of glycerol with aldehydes and ketones were performed under thermal heating and microwave irradiation regimes. Homogeneous and heterogeneous catalysts were tested in both conditions. A silica sulfated (SiO2-SO3H) heterogeneous catalyst demonstrated the best performance relative to a selectivity of >95% in favor of 5-membered ketals. For acetals, preference in favor of 5-membered or 6-membered functional groups depends on the nature of the catalyst. Homogenous catalysts favor the more stable 6-membered acetals, whereas heterogeneous catalysts favor the less stable 5-membered acetals. However, the isomer ratios in the acetalization reaction are too low, and hence the reaction cannot be used in a synthetic plan for functional materials. Ketalization processes mediated by SiO2-SO3H show a high selectivity in favor of a 5-membered ring (1,3-dioxolane). The scope of condensation was tested with different ketones. A mechanism for heterogeneous catalysis related to the selectivity in the cyclization process is presented herein. Solketal, a commercial product, was also obtained by a condensation reaction of glycerol and propanone, and showed a high selectivity in favor of 1,3-dioxolane. It was transformed to potential allylic and chiral intermediates. A mesogenic core was connected to the organic framework of glycerol to produce a monomer liquid crystal material with a stable smectic-C mesophase.
Resumo:
O objetivo deste estudo foi avaliar o efeito dos silicatos de cálcio e de sódio sobre a intensidade da cercosporiose (Cercospora coffeicola) em mudas de cafeeiro (Coffea arabica), cultivar Catuaí IAC 99, nas doses 0; 0,32; 0,64; 1,26 g de SiO2.kg-1 de substrato. Foram realizadas cinco avaliações quinzenais nas quais se quantificou o número de plantas doentes, o número de folhas lesionadas por planta, o número de lesões por folha e o número total de lesões por planta. Essas avaliações foram utilizadas para construir a área abaixo da curva de progresso da doença. Ao término das avaliações, foram determinados os teores de macro, micronutrientes, silício e lignina na parte aérea das mudas de cafeeiro. A menor área abaixo da curva de progresso do total de lesões foi obtida com a dose de 0,84 g.kg-1 de silicato de sódio. Observou-se decréscimo linear para área abaixo da curva de progresso do número de plantas doentes e aumento na concentração de lignina nas folhas até a dose de 0,52 g.kg-1 de silicato de sódio, enquanto no caule houve acúmulo de SiO2 até 0,53 g.kg.-1.
Resumo:
Estudou-se a redução de Cr(VI) à Cr(III) utilizando-se um novo suporte preparado pela ativação de aminopropil sílica com substâncias húmicas aquáticas (ATPS-SiO2-SHA). Coletaram-se amostras de água no Corrégo Itapitangui localizado no município de Cananéia-SP e extraíram-se as SHA utilizando-se procedimento recomendado pela Sociedade Internacional de Substâncias Húmicas. Após purificação por diálise, fez-se a imobilização das SHA na aminopropil sílica (APTS-SiO2) em pH 7,0, sob agitação mecânica por 48 horas à temperatura ambiente. Adicionaram-se 150 mg de APTS-SiO2-SHA à 150 mL de soluções 9,5 mimol L-1 de Cr(VI), fixou-se o pH em 2,5, 4,5 e 6,0 e mantiveram-se as misturas sob agitação mecânica à temperatura ambiente. Coletaram-se alíquotas em função do tempo (0-72 horas) e as concentrações de Cr(VI) foram determinadas por espectrofotometria baseada na reação com 1,5-difenilcarbazida. A porcentagem de redução de Cr(VI) por APTS-SiO2-SHA foi de 50, 4 e 0 % em pH 2,5, 4,5 e 6,0, respectivamente. Dobrando a massa do suporte APTS-SiO2-SHA verificou-se em pH 2,5, a redução de 70 % de Cr(VI). Esses resultados preliminares mostram forte influência do pH e da quantidade de APTS-SiO2-SHA no processo de redução do Cr(VI). Após outros estudos, a utilização do suporte APTS-SiO2-SHA pode ser uma alternativa viável a ser aplicada para o tratamento de resíduos e/ou estudos de especiação de crômio.
Resumo:
This work describes the sol-gel mixed oxide SiO2/TiO2 property, ST, as prepared, and submitted to heat treatment a 773 K, STC. SEM and EDS images show, within magnification used, a uniform distribution of the TiO2 particles in SiO2/TiO2 matrix. Both, ST and STC adsorb hydrogen peroxide on the surface and through EPR and UV-Vis diffuse reflectance spectra, it was possible to conclude that the species on the surface is the peroxide molecule attached to the Lewis acid site of titanium particle surface, alphaTi(H2O2)+. As the material is very porous, presumably the hydrogen peroxide molecule is confined in the matrix pores on the surface, a reason why the adsorbed species presents an exceptional long lived stability.