929 resultados para Single Phase Grid Connected Inverter
Resumo:
Seit gut zehn Jahren erlebt die Windenergienutzung in Deutschland einen in der Mitte der 80er Jahre nicht für möglich gehaltenen Aufschwung. Anlagenanzahl und installierte Leistung haben in diesem Zeitraum mit durchschnittlichen jährlichen Wachstumsraten von mehr als 30 Prozent zugenommen, die mittlere installierte Leistung pro neu errichteter Anlage stieg dabei um das Zehnfache und die technische Verfügbarkeit der Anlagen liegt mittlerweile bei über 98 Prozent. Mit größer werdenden Anlagen zeigt sich weiterhin ein klarer Trend zu Blattwinkel verstellbaren Konzepten, mit zunehmend drehzahlvariabler Betriebsweise. Vor dem von Vielen für die kommenden drei bis sechs Jahre prognostizierten Einstieg in die großtechnische Offshore- Windenergienutzung mit den damit verbundenen immensen technologischen und strukturellen Herausforderungen erscheint es sinnvoll, einen kritischen Blick zurückzuwerfen auf die 90er Jahre mit den ihnen zugrunde liegenden förderpolitischen Rahmenbedingungen. Dabei soll die Frage beantwortet werden, welchen konkreten Einfluss die staatlichen Forschungs- und Förderprogramme, besonders das "250 MW Wind"-Programm, auf die Entwicklung der Windenergienutzung hatten, das heißt, unter welchen Bedingungen sich bestimmte Techniklinien durchsetzten, wie der Einfluss eines geschützten Marktes durch gesetzlich garantierte Einspeisetarife auf diese Entwicklung zu bewerten ist und schließlich, welche Fehlentwicklungen möglicher Weise eingetreten sind. Dazu wird mit Hilfe von Lernkurven gezeigt, welche Kostenreduktionen insgesamt erzielt wurden, wie hoch die dazu notwendigen staatlichen Finanzmittel waren und welche Schlussfolgerungen daraus für die Zukunft abgeleitet werden können. Die Arbeit soll insgesamt dazu beitragen, die erreichten technischen Entwicklungsschritte vor dem Hintergrund der förderpolitischen Gegebenheiten besser zu verstehen, Chancen für gezielte Änderungen in der Förderpraxis zu ergreifen und Hinweise auf die Ausgestaltung von zukünftigen Forschungsprogrammen und Entwicklungsschwerpunkten im Bereich der Windenergie zu geben, um weitere Kostensenkungspotenziale auszuschöpfen. Dabei wird sich die zukünftige Schwerpunktsetzung in der programmatischen Ausrichtung der Forschung stärker auf die drei wichtigsten Anwendungsfelder für Windenergieanlagen konzentrieren müssen, die großtechnische Offshore- Anwendung, die netzgebundene, dezentrale Energieversorgung sowie auf Windenergieanlagen zur ländlichen Elektrifizierung in autonomen Versorgungssystemen für Schwellen- und Entwicklungsländer.
Resumo:
Fault location has been studied deeply for transmission lines due to its importance in power systems. Nowadays the problem of fault location on distribution systems is receiving special attention mainly because of the power quality regulations. In this context, this paper presents an application software developed in Matlabtrade that automatically calculates the location of a fault in a distribution power system, starting from voltages and currents measured at the line terminal and the model of the distribution power system data. The application is based on a N-ary tree structure, which is suitable to be used in this application due to the highly branched and the non- homogeneity nature of the distribution systems, and has been developed for single-phase, two-phase, two-phase-to-ground, and three-phase faults. The implemented application is tested by using fault data in a real electrical distribution power system
Resumo:
A detailed study of the morphology and micro-morphology of Quaternary alluvial calcrete profiles from the Sorbas Basin shows that calcretes may be morphologically simple or complex. The 'simple' profiles reflect pedogenesis occurring after alluvial terrace formation and consist of a single pedogenic horizon near the land surface. The 'complex' profiles reflect the occurrence of multiple calcrete events during terrace sediment aggradation and further periods of pedogenesis after terrace formation. These 'complex' calcrete profiles are consequently described as composite profiles. The exact morphology of the composite profiles depends upon: (1) the number of calcrete-forming events occurring during terrace sediment aggradation; (2) the amount of sediment accretion that occurs between each period of calcrete formation; and (3) the degree of pedogenesis after terrace formation. Simple calcrete profiles are most useful in establishing landform chronologies because they represent a single phase of pedogenesis after terrace formation. Composite profiles are more problematic. Pedogenic calcretes that form within them may inherit carbonate from calcrete horizons occurring lower down in the terrace sediments. In addition erosion may lead to the exhumation of older calcretes within the terrace sediment. Calcrete 'inheritance' may make pedogenic horizons appear more mature than they actually are and produce horizons containing carbonate embracing a range of ages. Calcrete exhumation exposes calcrete horizons whose morphology and radiometric ages are wholly unrelated to terrace surface age. Composite profiles are, therefore, only suitable for chronological studies if the pedogenic horizon capping the terrace sequence can be clearly distinguished from earlier calcrete-forming events. Thus, a detailed morphological/micro-morphological study is required before any chronological study is undertaken. This is the only way to establish whether particular calcrete profiles are suitable for dating purposes. Copyright (C) 2003 John Wiley Sons, Ltd.
Resumo:
A study was conducted to estimate variation among laboratories and between manual and automated techniques of measuring pressure on the resulting gas production profiles (GPP). Eight feeds (molassed sugarbeet feed, grass silage, maize silage, soyabean hulls, maize gluten feed, whole crop wheat silage, wheat, glucose) were milled to pass a I mm screen and sent to three laboratories (ADAS Nutritional Sciences Research Unit, UK; Institute of Grassland and Environmental Research (IGER), UK; Wageningen University, The Netherlands). Each laboratory measured GPP over 144 h using standardised procedures with manual pressure transducers (MPT) and automated pressure systems (APS). The APS at ADAS used a pressure transducer and bottles in a shaking water bath, while the APS at Wageningen and IGER used a pressure sensor and bottles held in a stationary rack. Apparent dry matter degradability (ADDM) was estimated at the end of the incubation. GPP were fitted to a modified Michaelis-Menten model assuming a single phase of gas production, and GPP were described in terms of the asymptotic volume of gas produced (A), the time to half A (B), the time of maximum gas production rate (t(RM) (gas)) and maximum gas production rate (R-M (gas)). There were effects (P<0.001) of substrate on all parameters. However, MPT produced more (P<0.001) gas, but with longer (P<0.001) B and t(RM gas) (P<0.05) and lower (P<0.001) R-M gas compared to APS. There was no difference between apparatus in ADDM estimates. Interactions occurred between substrate and apparatus, substrate and laboratory, and laboratory and apparatus. However, when mean values for MPT were regressed from the individual laboratories, relationships were good (i.e., adjusted R-2 = 0.827 or higher). Good relationships were also observed with APS, although they were weaker than for MPT (i.e., adjusted R-2 = 0.723 or higher). The relationships between mean MPT and mean APS data were also good (i.e., adjusted R 2 = 0. 844 or higher). Data suggest that, although laboratory and method of measuring pressure are sources of variation in GPP estimation, it should be possible using appropriate mathematical models to standardise data among laboratories so that data from one laboratory could be extrapolated to others. This would allow development of a database of GPP data from many diverse feeds. (c) 2005 Published by Elsevier B.V.
Resumo:
A new family of vanadium-substituted chromium sulfides (VxCr2-xS3, 0 < x < 2) has been prepared and characterized by powder X-ray and neutron diffraction, SQUID magnetometry, electrical resistivity, and Seebeck coefficient measurements. Vanadium substitution leads to a single-phase region with a rhombohedral Cr2S3 structure over the composition range 0.0 < x e 0.75, while at higher vanadium contents (1.6 e x < 2.0) a second single-phase region, in which materials adopt a cation-deficient Cr3S4 structure, is observed. Materials with the Cr2S3 structure all exhibit semiconducting behavior. However, both transport and magnetic properties indicate an increasing degree of electron delocalization with increasing vanadium content in this compositional region. Materials that adopt a Cr3S4-type structure exhibit metallic behavior. Magnetic susceptibility data reveal that all materials undergo a magnetic ordering transition at temperatures in the range 90–118 K. Low-temperature magnetization data suggest that this involves a transition to a ferrimagnetic state.
Resumo:
A new myxosporean species, Henneguya eirasi n. sp., is described parasitizing the gill filaments of Pseudoplatystoma corruscans and Pseudoplatystoma fasciatum (Siluriformes: Pimelodidae) caught in the Patanal Wetland of the state of Mato Grosso, Brazil. The parasite formed white, elongated plasmodia measuring up to 3 mm. Mature spores were ellipsoidal in the frontal view, measuring 37.1 +/- 1.8 mu m in total length, 12.9 +/- 0.8 mu m in body length, 3.4 +/- 0.3 mu m in width, 3.1 +/- 0.1 mu m in thickness and 24.6 +/- 2.2 mu m in the caudal process. Polar capsules were elongated and equal in size, measuring 5.4 +/- 0.5 mu m in length and 0.7 +/- 0.1 mu m in width. Polar filaments had 12-13 coils. Histopathological analysis revealed that the parasite developed in the sub-epithelial connective tissue of the gill filaments and the plasmodia were surrounded by a capsule of host connective tissue. The plasmodia caused slight compression of the adjacent tissues, but no inflammatory response was observed in the infection site. Ultrastructure analysis revealed a single plasmodial wall connected to the ectoplasmic zone through numerous pinocytotic canals. The plasmodial wall exhibited numerous projections and slightly electron-dense material was found in the ectoplasm next to the plasmodial wall, forming a line just below the wall. Partial sequencing of the 18S rDNA gene of H. eirasi n. sp. obtained from P. fasciatum resulted in a total of 1066 bp and this sequence did not match any of the Myxozoa available in the GenBank. Phylogenetic analysis revealed the Henneguya species clustering into clades following the order and family of the host fishes. H. eirasi n. sp. clustered alone in one clade, which was the basal unit for the clade composed of Henneguya species parasites of siluriform ictalurids. The prevalence of the parasite was 17.1% in both fish species examined. Parasite prevalence was not influenced by season, host sex or host size. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The magnetic behavior of polycrystalline yttrium orthoferrite was studied from the experimental and theoretical points of view. Magnetization measurements up to 170 kOe were carried out on a single-phase YFeO3 sample synthesized from heterobimetallic alkoxides. The complex interplay between weak-ferromagnetic and antiferromagnetic interactions, observed in the experimental M(H) curves, was successfully simulated by locally minimizing the magnetic energy of two interacting Fe sublattices. The resulting values of exchange field (H-E = 5590 kOe), anisotropy field (H-A = 0.5 kOe) and Dzyaloshinsky-Moriya antisymmetric field (H-D = 149 kOe) are in good agreement with previous reports on this system. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
A new quaternary intermetallic borocarbide TmCo(2)B(2)C has been synthesized via rapid-quench of an arc-melted ingot. Elemental and powder-diffraction analyses established its correct stoichiometry and single-phase character. The crystal structure is isomorphous with that of TmNi(2)B(2)C (I4/mmm) and is stable over the studied temperature range. Above 7 K, the paramagnetic state follows modified Curie-Weiss behavior (chi = C/(T - theta) + chi(0)) wherein chi(0) = 0.008(1) emu mol(-1) with the temperature-dependent term reflecting the paramagnetism of the Tm subsystem: mu(eff) = 7.6(2) mu(B) (in agreement with the expected value for a free Tm(3+) ion) and theta = -4.5(3) K. Long-range ferromagnetic order of the Tm sublattice is observed to develop around similar to 1 K. No superconductivity is detected in TmCo(2)B(2)C down to 20 mK, a feature which is consistent with the general trend in the RCo(2)B(2)C series. Finally, the influence of the rapid-quench process on the magnetism (and superconductivity) of TmNi(2)B(2)C will be discussed and compared to that of TmCo(2)B(2)C.
Resumo:
Polycrystalline fine powder of YAlO(3) (YAP) was synthesized by the modified polymeric precursor method. A preliminary gradual pyrolytic decomposition under nitrogen flux was crucial in the removal process of organic residues to avoid the formation of molecular level inhomogeneities. YAP single phase was crystallized at temperatures between 950 degrees C and 1000 degrees C using chemically homogeneous ball-milled amorphous particles and very fast heating rates, corresponding to the lowest synthesis temperature of pure YAP nanopowder by soft chemistry routes. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
CdS is one of the most important II-VI semiconductors, with applications in solar cells, optoelectronics and electronic devices. CdS nanoparticles were synthesized via microwave-assisted solvothermal technique. Structural and morphological characterization revealed the presence of crystalline structures presenting single phase with different morphologies such as ""nanoflowers"" and nanoplates depending on the solvent used. Optical characterization was made by diffuse reflectance and photoluminescence spectroscopy, revealing the influence of the different solvents on the optical properties due to structural defects generated during synthesis. It is proposed that these defects are related to sulfur vacancies, with higher concentration of defects for the sample synthesized in ethylene glycol in comparison with the one synthesized in ethylene diamine. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Nanostructural beta-nickel hydroxide (beta-Ni(OH)(2)) plates were prepared using the microwave hydrothermal (MH) method at a low temperature and short reaction times. An ammonia solution was employed as the coordinating agent, which reacts with [Ni(H(2)O)(6)](2+) to control the growth of beta-Ni(OH)(2) nuclei. A trigonal beta-Ni(OH)(2) single phase was observed by X-ray diffraction (XRD) analyses, and the crystal cell was constructed with structural parameters and atomic coordinates obtained from Rietveld refinement. Field emission scanning electron microscopy (FE-SEM) images revealed that the samples consisted of hexagonal-shaped nanoplates with a different particle size distribution. Broad absorption bands assigned as transitions of Ni(2+) in oxygen octahedral sites were revealed by UV-vis spectra. Photoluminescence (PL) properties observed with a maximum peak centered in the blue-green region were attributed to different defects, which were produced during the nucleation process. We present a growth process scheme of the beta-Ni(OH)(2) nanoplates. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
Thin Cd(2)Nb(2)O(7) films were grown on single-crystal p-type SiO(2)/Si substrates by the metallo-organic decomposition (MOD) technique. The films were investigated by X-ray diffraction, X-ray energy-dispersive spectroscopy, and field emission scanning electron microscopy, and showed a single phase (cubic pyrochlore), a crack-free spherical grain structure, and nanoparticles with a mean size of about 68 nm. A Cauchy model was also used in order to obtain the thickness and index of refraction of the stack layers (transparent layer/SiO(2)/Si) by spectroscopic ellipsometry (SE). The dielectric constant (K) of the films was calculated to be about 25 from the capacitance-voltage (C-V) measurements. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Zinc oxide is a widely used white inorganic pigment. Transition metal ions are used as chromophores and originate the ceramic pigments group. In this context, ZnO particles doped with Co, Fe, and V were synthesized by the polymeric precursors method, Pechini method. Differential scanning calorimetry (DSC) and thermogravimetry (TG) techniques were used to accurately characterize the distinct thermal events occurring during synthesis. The TG and DSC results revealed a series of decomposition temperatures due to different exothermal events, which were identified as H(2)O elimination, organic compounds degradation and phase formation. The samples were structurally characterized by X-Ray diffractometry revealing the formation of single phase, corresponding to the crystalline matrix of ZnO. The samples were optically characterized by diffuse reflectance measurements and colorimetric coordinates L*, a*, b* were calculated for the pigment powders. The pigment powders presented a variety of colors ranging from white (ZnO), green (Zn(0.97)Co(0.03)O), yellow (Zn(0.97)Fe(0.03)O), and beige (Zn(0.97)V(0.03)O).
Resumo:
The electro-oxidation of methanol at supported tungsten carbide (WC) nanoparticles in sulfuric acid solution was studied using cyclic voltammetry, potentiostatic measurements, and differential electrochemical mass spectroscopy (DEMS). The catalyst was prepared by a sonochemical method and characterized by X-ray diffraction. Over the WC catalyst, the oxidation of methanol (1 M in a sulfuric acid electrolyte) begins at a potential below 0.5 V/RHE during the anodic sweep. During potentiostatic measurements, a maximum current of 0.8 mA mg(-1) was obtained at 0.4 V. Measurements of DEMS showed that the methanol oxidation reaction over tungsten carbide produces CO2 (m/z=44); no methylformate (m/z=60) was detected. These results are discussed in the context of the continued search for alternative materials for the anode catalyst of direct methanol fuel cells.
Resumo:
The performance of La(2-x)M(x)CuO(4) perovskites (where M = Ce, Ca or Sr) as catalysts for the water-gas shift reaction was investigated at 290 degrees C and 360 degrees C. The catalysts were characterized by EDS, XRD, N(2) adsorption-desorption, XPS and XANES. The XRD results showed that all the perovskites exhibited a single phase (the presence of perovskite structure), suggesting the incorporation of metals in the perovskite structure. The XPS and XANES results showed the presence of Cu(2+) on the surface. The perovskites that exhibited the best catalytic performance were La(2-x)Ce(x)CuO(4) perovslcites, with CO conversions of 85%-90%. Moreover, these perovskites have higher surface areas and larger amounts of Cu on the surface. And Ce has a higher filled energy level than the other metals, increasing the energy of the valence band of Ce and providing more electrons for the reaction. Besides, the La(1.80)Ca(0.20)CuO(4) perovskite showed a good catalytic performance.