951 resultados para Signal processing


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Power laws, also known as Pareto-like laws or Zipf-like laws, are commonly used to explain a variety of real world distinct phenomena, often described merely by the produced signals. In this paper, we study twelve cases, namely worldwide technological accidents, the annual revenue of America׳s largest private companies, the number of inhabitants in America׳s largest cities, the magnitude of earthquakes with minimum moment magnitude equal to 4, the total burned area in forest fires occurred in Portugal, the net worth of the richer people in America, the frequency of occurrence of words in the novel Ulysses, by James Joyce, the total number of deaths in worldwide terrorist attacks, the number of linking root domains of the top internet domains, the number of linking root domains of the top internet pages, the total number of human victims of tornadoes occurred in the U.S., and the number of inhabitants in the 60 most populated countries. The results demonstrate the emergence of statistical characteristics, very close to a power law behavior. Furthermore, the parametric characterization reveals complex relationships present at higher level of description.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper addresses limit cycles and signal propagation in dynamical systems with backlash. The study follows the describing function (DF) method for approximate analysis of nonlinearities and generalizes it in the perspective of the fractional calculus. The concept of fractional order describing function (FDF) is illustrated and the results for several numerical experiments are analysed. FDF leads to a novel viewpoint for limit cycle signal propagation as time-space waves within system structure.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The decomposition of a fractional linear system is discussed in this paper. It is shown that it can be decomposed into an integer order part, corresponding to possible existing poles, and a fractional part. The first and second parts are responsible for the short and long memory behaviors of the system, respectively, known as characteristic of fractional systems.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study addresses the deoxyribonucleic acid (DNA) and proposes a procedure based on the association of statistics, information theory, signal processing, Fourier analysis and fractional calculus for describing fundamental characteristics of the DNA. In a first phase the 24 chromosomes of the Human are evaluated. In a second phase, 10 chromosomes for different species are also processed and the results compared. The results reveal invariance in the description and close resemblances with fractional Brownian motion.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Proceedings of the 12th Conference on 'Dynamical Systems -Theory and Applications'

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Signal Processing: Algorithms, Architectures, Arrangements, and Applications (SPA), 2013

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The paper revisits the convolution operator and addresses its generalization in the perspective of fractional calculus. Two examples demonstrate the feasibility of the concept using analytical expressions and the inverse Fourier transform, for real and complex orders. Two approximate calculation schemes in the time domain are also tested.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The recent developments on Hidden Markov Models (HMM) based speech synthesis showed that this is a promising technology fully capable of competing with other established techniques. However some issues still lack a solution. Several authors report an over-smoothing phenomenon on both time and frequencies which decreases naturalness and sometimes intelligibility. In this work we present a new vowel intelligibility enhancement algorithm that uses a discrete Kalman filter (DKF) for tracking frame based parameters. The inter-frame correlations are modelled by an autoregressive structure which provides an underlying time frame dependency and can improve time-frequency resolution. The systemâs performance has been evaluated using objective and subjective tests and the proposed methodology has led to improved results.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Mestre em Engenharia Biomédica

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Mestre em Engenharia Biomédica

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Electrical and Computer Engineering of the Faculdade de Ciências e Tecnologia of Universidade Nova de Lisboa

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Doutor em Engenharia Física

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dissertation submitted in the fufillment of the requirements for the Degree of Master in Biomedical Engineering

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dissertation to Obtain Master Degree in Biomedical Engineering

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nowadays, existing 3D scanning cameras and microscopes in the market use digital or discrete sensors, such as CCDs or CMOS for object detection applications. However, these combined systems are not fast enough for some application scenarios since they require large data processing resources and can be cumbersome. Thereby, there is a clear interest in exploring the possibilities and performances of analogue sensors such as arrays of position sensitive detectors with the final goal of integrating them in 3D scanning cameras or microscopes for object detection purposes. The work performed in this thesis deals with the implementation of prototype systems in order to explore the application of object detection using amorphous silicon position sensors of 32 and 128 lines which were produced in the clean room at CENIMAT-CEMOP. During the first phase of this work, the fabrication and the study of the static and dynamic specifications of the sensors as well as their conditioning in relation to the existing scientific and technological knowledge became a starting point. Subsequently, relevant data acquisition and suitable signal processing electronics were assembled. Various prototypes were developed for the 32 and 128 array PSD sensors. Appropriate optical solutions were integrated to work together with the constructed prototypes, allowing the required experiments to be carried out and allowing the achievement of the results presented in this thesis. All control, data acquisition and 3D rendering platform software was implemented for the existing systems. All these components were combined together to form several integrated systems for the 32 and 128 line PSD 3D sensors. The performance of the 32 PSD array sensor and system was evaluated for machine vision applications such as for example 3D object rendering as well as for microscopy applications such as for example micro object movement detection. Trials were also performed involving the 128 array PSD sensor systems. Sensor channel non-linearities of approximately 4 to 7% were obtained. Overall results obtained show the possibility of using a linear array of 32/128 1D line sensors based on the amorphous silicon technology to render 3D profiles of objects. The system and setup presented allows 3D rendering at high speeds and at high frame rates. The minimum detail or gap that can be detected by the sensor system is approximately 350 μm when using this current setup. It is also possible to render an object in 3D within a scanning angle range of 15º to 85º and identify its real height as a function of the scanning angle and the image displacement distance on the sensor. Simple and not so simple objects, such as a rubber and a plastic fork, can be rendered in 3D properly and accurately also at high resolution, using this sensor and system platform. The nip structure sensor system can detect primary and even derived colors of objects by a proper adjustment of the integration time of the system and by combining white, red, green and blue (RGB) light sources. A mean colorimetric error of 25.7 was obtained. It is also possible to detect the movement of micrometer objects using the 32 PSD sensor system. This kind of setup offers the possibility to detect if a micro object is moving, what are its dimensions and what is its position in two dimensions, even at high speeds. Results show a non-linearity of about 3% and a spatial resolution of < 2µm.