958 resultados para Si shu.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

[Traditions. Afrique du Nord. Maroc]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

[Traditions. Afrique du Nord. Maroc]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

[Traditions. Afrique du Nord. Maroc]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

[Traditions. Afrique du Nord. Maroc]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

[Traditions. Afrique du Nord. Algérie]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

[Traditions. Afrique du Nord. Maroc]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The paper commented on here R. M. C. de Almeida, S. Gonçalves, I. J. R. Baumvol and F. C. Stedile Phys. Rev. B 61 12992 (2000) claims that the Deal and Grove model of oxidation is unable to describe the kinetics in the thin oxide regime due to two main simplifications: (a) the steady-state assumption and (b) the abrupt SiSiO2 interface assumption. Although reasonably good fits are obtained without these simplifications, it will be shown that the values of the kinetic parameters are not reliable and that the solutions given for different partial pressures are erroneous. Finally, it will be shown that the correct solution of their model is unable to predict the oxidation rate enhancement observed in the thin oxide regime and that the predicted width of the interface compatible with the Deal and Grove rate constants is too large

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oxidation of amorphous silicon (a-Si) nanoparticles grown by plasma-enhanced chemical vapor deposition were investigated. Their hydrogen content has a great influence on the oxidation rate at low temperature. When the mass gain is recorded during a heating ramp in dry air, an oxidation process at low temperature is identified with an onset around 250°C. This temperature onset is similar to that of hydrogen desorption. It is shown that the oxygen uptake during this process almost equals the number of hydrogen atoms present in the nanoparticles. To explain this correlation, we propose that oxidation at low temperature is triggered by the process of hydrogen desorption

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lasers are essential tools for cell isolation and monolithic interconnection in thin-film-silicon photovoltaic technologies. Laser ablation of transparent conductive oxides (TCOs), amorphous silicon structures and back contact removal are standard processes in industry for monolithic device interconnection. However, material ablation with minimum debris and small heat affected zone is one of the main difficulty is to achieve, to reduce costs and to improve device efficiency. In this paper we present recent results in laser ablation of photovoltaic materials using excimer and UV wavelengths of diode-pumped solid-state (DPSS) laser sources. We discuss results concerning UV ablation of different TCO and thin-film silicon (a-Si:H and nc-Si:H), focussing our study on ablation threshold measurements and process-quality assessment using advanced optical microscopy techniques. In that way we show the advantages of using UV wavelengths for minimizing the characteristic material thermal affection of laser irradiation in the ns regime at higher wavelengths. Additionally we include preliminary results of selective ablation of film on film structures irradiating from the film side (direct writing configuration) including the problem of selective ablation of ZnO films on a-Si:H layers. In that way we demonstrate the potential use of UV wavelengths of fully commercial laser sources as an alternative to standard backscribing process in device fabrication.