978 resultados para Sepsis - Theses


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Painovuosi nimekkeestä.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Painovuosi nimekkeestä.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Invokaatio: I.N.S.S.T.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Invokaatio: D.D.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Painovuosi nimekkeestä.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Painovuosi nimekkeestä.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gratulaatio: M. Petihzius.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Invokaatio: D.D.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Painovuosi nimekkeestä.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The adhesins of extraintestinal pathogenic Escherichia coli are essential for mediating direct interactions between the microbes and the host cell surfaces that they infect. Using fluorescence microscopy and gentamycin protection assays, we observed that 49 sepsis-associated E. coli (SEPEC) strains isolated from human adults adhered to and invaded Vero cells in the presence of D-mannose (100%). In addition, bacteria concentrations of approximately 2 x 10(7) CFU/mL were recovered from Vero cells following an invasion assay. Furthermore, PCR analysis of adhesin genes showed that 98.0% of these SEPEC strains tested positive for fimH, 69.4% for flu, 53.1% for csgA, 38.8% for mat, and 32.7% for iha. Analysis of the invasin genes showed that 16.3% of the SEPEC strains were positive for tia, 12.3% for gimB, and 10.2% for ibeA. Therefore, these data suggest that SEPEC adhesion to cell surfaces occurs through non-fimH mechanisms. Scanning electron microscopy showed the formation of microcolonies on the Vero cell surface. SEPEC invasiveness was also confirmed by the presence of intracellular bacteria, and ultrastructural analysis using electron transmission microscopy revealed bacteria inside the Vero cells. Taken together, these results demonstrate that these SEPEC strains had the ability to adhere to and invade Vero cells. Moreover, these data support the theory that renal cells may be the predominant pathway through which SEPEC enters human blood vessels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Invokaatio: Q.F.F.Q.S.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Invokaatio: Q.B.V.D.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gratulaatio: Ericus Julius Bioernerus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Invokaatio: In nomine Jesu!

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this research was to evaluate the interference of ethanol consumption by female rats with cytokines involved in the sepsis process and its correlation with mortality, the main outcome of sepsis. Female Wistar rats in estrus phase were evaluated in three experiments. Experiment 1 (n=40) was performed to determine survival rates. Experiment 2 (n=69) was designed for biochemical analysis, measurement of cytokine and estrogen levels before and after sepsis, and experiment 3 (n=10) was performed to evaluate bacterial growth by colony counts of peritoneal fluid. In all experiments, treated animals were exposed to a 10% ethanol/water solution (v/v) as the single drinking source, while untreated animals were given tap water. After 4 weeks, sepsis was induced in the rats by ip injection of feces. In experiment 1, mortality in ethanol-exposed animals was delayed compared with those that drank water (48 h; P=0.0001). Experiment 2 showed increased tumor necrosis factor alpha (TNF-α) and decreased interleukin-6 (IL-6) and macrophage migration inhibitory factor in septic animals exposed to ethanol compared to septic animals not exposed. Sepsis also increased TNF-α and IL-6 levels in both ethanol- and water-exposed groups. Biochemical analysis showed higher creatinine, alanine aminotransferase and aspartate aminotransferase and decreased glucose levels in septic animals that were exposed to ethanol. In experiment 3, septic animals exposed to ethanol showed decreased numbers of colony-forming units than septic animals exposed to water. These results suggest that ethanol consumption delays the mortality of female rats in estrus phase after sepsis induction. Female characteristics, most probably sex hormones, may be involved in cytokine expression.