945 resultados para Semantic Web, Web 2.0, Linked Data, Web of Data, OWL, QRPlaces, Ontologie, MashUp, Tecnologie Web
Resumo:
Currently many ontologies are available for addressing different domains. However, it is not always possible to deploy such ontologies to support collaborative working, so that their full potential can be exploited to implement intelligent cooperative applications capable of reasoning over a network of context-specific ontologies. The main problem arises from the fact that presently ontologies are created in an isolated way to address specific needs. However we foresee the need for a network of ontologies which will support the next generation of intelligent applications/devices, and, the vision of Ambient Intelligence. The main objective of this paper is to motivate the design of a networked ontology (Meta) model which formalises ways of connecting available ontologies so that they are easy to search, to characterise and to maintain. The aim is to make explicit the virtual and implicit network of ontologies serving the Semantic Web.
Resumo:
In general, ranking entities (resources) on the Semantic Web (SW) is subject to importance, relevance, and query length. Few existing SW search systems cover all of these aspects. Moreover, many existing efforts simply reuse the technologies from conventional Information Retrieval (IR), which are not designed for SW data. This paper proposes a ranking mechanism, which includes all three categories of rankings and are tailored to SW data.
Resumo:
Semantic Web technologies are strategic in order to fulfill the openness requirement of Self-Aware Pervasive Service Ecosystems. In fact they provide agents with the ability to cope with distributed data, using RDF to represent information, ontologies to describe relations between concepts from any domain (e.g. equivalence, specialization/extension, and so on) and reasoners to extract implicit knowledge. The aim of this thesis is to study these technologies and design an extension of a pervasive service ecosystems middleware capable of exploiting semantic power, and deepening performance implications.
Resumo:
This work is concerned with the increasing relationships between two distinct multidisciplinary research fields, Semantic Web technologies and scholarly publishing, that in this context converge into one precise research topic: Semantic Publishing. In the spirit of the original aim of Semantic Publishing, i.e. the improvement of scientific communication by means of semantic technologies, this thesis proposes theories, formalisms and applications for opening up semantic publishing to an effective interaction between scholarly documents (e.g., journal articles) and their related semantic and formal descriptions. In fact, the main aim of this work is to increase the users' comprehension of documents and to allow document enrichment, discovery and linkage to document-related resources and contexts, such as other articles and raw scientific data. In order to achieve these goals, this thesis investigates and proposes solutions for three of the main issues that semantic publishing promises to address, namely: the need of tools for linking document text to a formal representation of its meaning, the lack of complete metadata schemas for describing documents according to the publishing vocabulary, and absence of effective user interfaces for easily acting on semantic publishing models and theories.
Resumo:
L’Exploratory Search, paradigma di ricerca basato sulle attività di scoperta e d’apprendimento, è stato per diverso tempo ignorato dai motori di ricerca tradizionali. Invece, è spesso dalle ricerche esplorative che nascono le idee più innovative. Le recenti tecnologie del Semantic Web forniscono le soluzioni che permettono d’implementare dei motori di ricerca capaci di accompagnare gli utenti impegnati in tale tipo di ricerca. Aemoo, motore di ricerca sul quale s’appoggia questa tesi ne è un esempio efficace. A partire da quest’ultimo e sempre con l’aiuto delle tecnologie del Web of Data, questo lavoro si propone di fornire una metodologia che permette di prendere in considerazione la singolarità del profilo di ciascun utente al fine di guidarlo nella sua ricerca esplorativa in modo personalizzato. Il criterio di personalizzazione che abbiamo scelto è comportamentale, ovvero basato sulle decisioni che l’utente prende ad ogni tappa che ritma il processo di ricerca. Implementando un prototipo, abbiamo potuto testare la validità di quest’approccio permettendo quindi all’utente di non essere più solo nel lungo e tortuoso cammino che porta alla conoscenza.
Resumo:
La capacità di estrarre entità da testi, collegarle tra loro ed eliminare possibili ambiguità tra di esse è uno degli obiettivi del Web Semantico. Chiamato anche Web 3.0, esso presenta numerose innovazioni volte ad arricchire il Web con dati strutturati comprensibili sia dagli umani che dai calcolatori. Nel reperimento di questi temini e nella definizione delle entities è di fondamentale importanza la loro univocità. Il nostro orizzonte di lavoro è quello delle università italiane e le entities che vogliamo estrarre, collegare e rendere univoche sono nomi di professori italiani. L’insieme di informazioni di partenza, per sua natura, vede la presenza di ambiguità. Attenendoci il più possibile alla sua semantica, abbiamo studiato questi dati ed abbiamo risolto le collisioni presenti sui nomi dei professori. Arald, la nostra architettura software per il Web Semantico, estrae entità e le collega, ma soprattutto risolve ambiguità e omonimie tra i professori delle università italiane. Per farlo si appoggia alla semantica dei loro lavori accademici e alla rete di coautori desumibile dagli articoli da loro pubblicati, rappresentati tramite un data cluster. In questo docu delle università italiane e le entities che vogliamo estrarre, collegare e rendere univoche sono nomi di professori italiani. Partendo da un insieme di informazioni che, per sua natura, vede la presenza di ambiguità, lo abbiamo studiato attenendoci il più possibile alla sua semantica, ed abbiamo risolto le collisioni che accadevano sui nomi dei professori. Arald, la nostra architettura software per il Web Semantico, estrae entità, le collega, ma soprattutto risolve ambiguità e omonimie tra i professori delle università italiane. Per farlo si appoggia alla semantica dei loro lavori accademici e alla rete di coautori desumibile dagli articoli da loro pubblicati tramite la costruzione di un data cluster.
Resumo:
In his in uential article about the evolution of the Web, Berners-Lee [1] envisions a Semantic Web in which humans and computers alike are capable of understanding and processing information. This vision is yet to materialize. The main obstacle for the Semantic Web vision is that in today's Web meaning is rooted most often not in formal semantics, but in natural language and, in the sense of semiology, emerges not before interpretation and processing. Yet, an automated form of interpretation and processing can be tackled by precisiating raw natural language. To do that, Web agents extract fuzzy grassroots ontologies through induction from existing Web content. Inductive fuzzy grassroots ontologies thus constitute organically evolved knowledge bases that resemble automated gradual thesauri, which allow precisiating natural language [2]. The Web agents' underlying dynamic, self-organizing, and best-effort induction, enable a sub-syntactical bottom up learning of semiotic associations. Thus, knowledge is induced from the users' natural use of language in mutual Web interactions, and stored in a gradual, thesauri-like lexical-world knowledge database as a top-level ontology, eventually allowing a form of computing with words [3]. Since when computing with words the objects of computation are words, phrases and propositions drawn from natural languages, it proves to be a practical notion to yield emergent semantics for the Semantic Web. In the end, an improved understanding by computers on the one hand should upgrade human- computer interaction on the Web, and, on the other hand allow an initial version of human- intelligence amplification through the Web.
Resumo:
In recent years, a variety of systems have been developed that export the workflows used to analyze data and make them part of published articles. We argue that the workflows that are published in current approaches are dependent on the specific codes used for execution, the specific workflow system used, and the specific workflow catalogs where they are published. In this paper, we describe a new approach that addresses these shortcomings and makes workflows more reusable through: 1) the use of abstract workflows to complement executable workflows to make them reusable when the execution environment is different, 2) the publication of both abstract and executable workflows using standards such as the Open Provenance Model that can be imported by other workflow systems, 3) the publication of workflows as Linked Data that results in open web accessible workflow repositories. We illustrate this approach using a complex workflow that we re-created from an influential publication that describes the generation of 'drugomes'.
Resumo:
In parallel to the effort of creating Open Linked Data for the World Wide Web there is a number of projects aimed for developing the same technologies but in the context of their usage in closed environments such as private enterprises. In the paper, we present results of research on interlinking structured data for use in Idea Management Systems - a still rare breed of knowledge management systems dedicated to innovation management. In our study, we show the process of extending an ontology that initially covers only the Idea Management System structure towards the concept of linking with distributed enterprise data and public data using Semantic Web technologies. Furthermore we point out how the established links can help to solve the key problems of contemporary Idea Management Systems
Resumo:
In this introductory chapter we put in context and give a brief outline of the work that we thoroughly present in the rest of the dissertation. We consider this work divided in two main parts. The first part is the Firenze Framework, a knowledge level description framework rich enough to express the semantics required for describing both semantic Web services and semantic Grid services. We start by defining what the Semantic Grid is and its relation with the Semantic Web; and the possibility of their convergence since both initiatives have become mainly service-oriented. We also introduce the main motivators of the creation of this framework, one is to provide a valid description framework that works at knowledge level; the other to provide a description framework that takes into account the characteristics of Grid services in order to be able to describe them properly. The other part of the dissertation is devoted to Vega, an event-driven architecture that, by means of proposed knowledge level description framework, is able to achieve high scale provisioning of knowledge-intensive services. In this introductory chapter we portrait the anatomy of a generic event-driven architecture, and we briefly enumerate their main characteristics, which are the reason that make them our choice.
Resumo:
This paper describes the process followed in order to make some of the public meterological data from the Agencia Estatal de Meteorología (AEMET, Spanish Meteorological Office) available as Linked Data. The method followed has been already used to publish geographical, statistical, and leisure data. The data selected for publication are generated every ten minutes by the 250 automatic stations that belong to AEMET and that are deployed across Spain. These data are available as spreadsheets in the AEMET data catalog, and contain more than twenty types of measurements per station. Spreadsheets are retrieved from the website, processed with Python scripts, transformed to RDF according to an ontology network about meteorology that reuses the W3C SSN Ontology, published in a triple store and visualized in maps with Map4rdf.
Resumo:
In this position paper, we claim that the need for time consuming data preparation and result interpretation tasks in knowledge discovery, as well as for costly expert consultation and consensus building activities required for ontology building can be reduced through exploiting the interplay of data mining and ontology engineering. The aim is to obtain in a semi-automatic way new knowledge from distributed data sources that can be used for inference and reasoning, as well as to guide the extraction of further knowledge from these data sources. The proposed approach is based on the creation of a novel knowledge discovery method relying on the combination, through an iterative ?feedbackloop?, of (a) data mining techniques to make emerge implicit models from data and (b) pattern-based ontology engineering to capture these models in reusable, conceptual and inferable artefacts.
Resumo:
Current methods and tools that support Linked Data publication have mainly focused so far on static data, without considering the growing amount of streaming data available on the Web. In this paper we describe a case study that involves the publication of static and streaming Linked Data for bike sharing systems and related entities. We describe some of the challenges that we have faced, the solutions that we have explored, the lessons that we have learned, and the opportunities that lie in the future for exploiting Linked Stream Data.