987 resultados para Seismic reflection method
Resumo:
How can we calculate earthquake magnitudes when the signal is clipped and over-run? When a volcano is very active, the seismic record may saturate (i.e., the full amplitude of the signal is not recorded) or be over-run (i.e., the end of one event is covered by the start of a new event). The duration, and sometimes the amplitude, of an earthquake signal are necessary for determining event magnitudes; thus, it may be impossible to calculate earthquake magnitudes when a volcano is very active. This problem is most likely to occur at volcanoes with limited networks of short period seismometers. This study outlines two methods for calculating earthquake magnitudes when events are clipped and over-run. The first method entails modeling the shape of earthquake codas as a power law function and extrapolating duration from the decay of the function. The second method draws relations between clipped duration (i.e., the length of time a signal is clipped) and the full duration. These methods allow for magnitudes to be determined within 0.2 to 0.4 units of magnitude. This error is within the range of analyst hand-picks and is within the acceptable limits of uncertainty when quickly quantifying volcanic energy release during volcanic crises. Most importantly, these estimates can be made when data are clipped or over-run. These methods were developed with data from the initial stages of the 2004-2008 eruption at Mount St. Helens. Mount St. Helens is a well-studied volcano with many instruments placed at varying distances from the vent. This fact makes the 2004-2008 eruption a good place to calibrate and refine methodologies that can be applied to volcanoes with limited networks.
Resumo:
Sustainable development has only recently started examining the existing infrastructure, and a key aspect of this is hazard mitigation. To examine buildings under a sustainable perspective requires an understanding of a building's life-cycle environmental costs, including the consideration of associated environmental impacts induced by earthquake damage. Damage repair costs lead to additional material and energy consumption, leading to harmful environmental impacts. Merging results obtained from a seismic evaluation and life-cycle analysis for buildings will give a novel outlook on sustainable design decisions. To evaluate the environmental impacts caused by buildings, long-term impacts accrued throughout a building's lifetime and impacts associated with damage repair need to be quantified. A method and literature review for completing this examination has been developed and is discussed. Using software Athena and HAZUS-MH, this study evaluated the performance of steel and concrete buildings considering their life-cycle assessments and earthquake resistance. It was determined that code design-level greatly effects a building repair and damage estimations. This study presented two case study buildings and found specific results that were obtained using several premade assumptions. Future research recommendations were provided to make this methodology more useful in real-world applications. Examining cost and environmental impacts that a building has through, a cradle-to-grave analysis and seismic damage assessment will help reduce material consumption and construction activities from taking place before and after an earthquake event happens.
Resumo:
Aggregate masonry buildings have been generated over the years, allowing the interaction of different aggregated structural units under seismic action. The first part of this work is focused on the seismic vulnerability and fragility assessment of clay brick masonry buildings, sited in Bologna (Italy), with reference, at first, to single isolated structural units, by means of the Response Surface statistical method, taking into account some variabilities and uncertainties involved in the problem. The seismic action was defined by means of a group of selected registered accelerograms, in order to analyse the effect of the variability of the earthquakes. Identical and different structural units chosen by the Response Surface generated simulations are then aggregated in row, in order to compare the collapse PGA referred to the isolated structural unit and the one referred to the aggregate structure. The second part is focused on the seismic vulnerability and fragility assessment of stone masonry structures, sited in Seixal (Portugal), applying a methodology similar to that used for the buildings sited in Bologna. Since the availability of several information, the analyses involved the assessment of the most prevalent structural typologies in the area, considering the variability of a set of structural and geometrical parameters. The results highlighted the importance of the statistic procedures as method able to consider the variabilities and the uncertainties involved in the problem of the fragility of unreinforced masonry structures, in absence of accurate investigations on the structural typologies, as in the Seixal case study. Furthermore, it was showed that the structural units along the unreinforced clay brick or stone masonry aggregates cannot be analysed as isolated, as they are affected by the effect of the aggregation with adjacent structural units, according to the different directions of the seismic action considered and to their different position along the row aggregate.
Resumo:
The topic of seismic loss assessment not only incorporates many aspects of the earthquake engineering, but also entails social factors, public policies and business interests. Because of its multidisciplinary character, this process may be complex to challenge, and sound discouraging to neophytes. In this context, there is an increasing need of deriving simplified methodologies to streamline the process and provide tools for decision-makers and practitioners. This dissertation investigates different possible applications both in the area of modelling of seismic losses, both in the analysis of observational seismic data. Regarding the first topic, the PRESSAFE-disp method is proposed for the fast evaluation of the fragility curves of precast reinforced-concrete (RC) structures. Hence, a direct application of the method to the productive area of San Felice is studied to assess the number of collapses under a specific seismic scenario. In particular, with reference to the 2012 events, two large-scale stochastic models are outlined. The outcomes of the framework are promising, in good agreement with the observed damage scenario. Furthermore, a simplified displacement-based methodology is outlined to estimate different loss performance metrics for the decision-making phase of the seismic retrofit of a single RC building. The aim is to evaluate the seismic performance of different retrofit options, for a comparative analysis of their effectiveness and the convenience. Finally, a contribution to the analysis of the observational data is presented in the last part of the dissertation. A specific database of losses of precast RC buildings damaged by the 2012 Earthquake is created. A statistical analysis is performed, allowing deriving several consequence functions. The outcomes presented may be implemented in probabilistic seismic risk assessments to forecast the losses at the large scale. Furthermore, these may be adopted to establish retrofit policies to prevent and reduce the consequences of future earthquakes in industrial areas.
Resumo:
The lower crustal structure beneath the Western Alps -- including the Moho -- bears the signature of past and present geodynamic processes. It has been the subject of many studies until now. However, its current knowledge still leaves significant open questions. In order to derive new information, independent from previous determinations, here I wish to address this topic using a different method --- ambient seismic noise autocorrelation --- that is for the first time applied to reveal Moho depth in the Western Alps. Moho reflections are identified by picking reflectivity changes in ambient seismic noise autocorrelations. The seismic data is retrieved from more than 200 broadband seismic stations, from the China--Italy--France Alps (CIFALPS) linear seismic network, and from a subset of the AlpArray Seismic Network (AASN). The automatically-picked reflectivity changes along the CIFALPS transect in the southwestern Alps show the best results in the 0.5--1 Hz frequency band. The autocorrelation reflectivity profile of the CIFALPS transect shows a steeper subduction profile,~55 to ~70 km, of the European Plate underneath the Adriatic Plate. The dense spacing of the CIFALPS network facilitates the detection of lateral continuity of crustal structure, and of the Ivrea mantle wedge reaching shallow crustal depths in the southwestern Alps. The data of the AASN stations are filtered in the 0.4--1 and 0.5--1 Hz frequency bands. Although the majority of the stations give the same Moho depth for the different frequency bands, the few stations with different Moho depths shows the care that has to be taken when choosing the frequency band for filtering the autocorrelation stacks. The new Moho depth maps by using the AASN stations are a compilation of the first and second picked reflectivity changes. The results show the complex crust-mantle structure with clear differences between the northwestern and southwestern Alps.
Resumo:
This PhD dissertation presents a profound study of the vulnerability of buildings and non-structural elements stemming from the investigation of the Mw 5.2 Lorca 2011 earthquake; which constitutes one of the most significant earthquakes in Spain. It left nine fatalities due to falling debris from reinforced concrete buildings, 394 injured and material damage valued at 800 million euros. Within this framework, the most relevant initiatives concerning the vulnerability of buildings and the exposure of Lorca are studied. This work revealed two lines of research: the elaboration of a rational method to determine the adequacy of a specific fragility curve for the particular seismic risk study of a region; and the relevance of researching the seismic performance of non-structural elements. As a consequence, firstly, a method to assess and select fragility curves for seismic risk studies from the catalogue of those available in the literature is elaborated and calibrated by means of a case study. The said methodology is based on a multidimensional index and provides a ranking that classifies the curves in terms of adequacy. Its results for the case of Lorca led to the elaboration of new fragility curves for unreinforced masonry buildings. Moreover, a simplified method to account for the unpredictable directionality of the seism in the creation of fragility curves is contributed. Secondly, the characterisation of the seismic capacity and demand of the non-structural elements that caused most of the human losses is studied. Concerning the capacity, an analytical approach derived from theoretical considerations to characterise the complete out-of-plane seismic response curve of unreinforced masonry cantilever walls is provided; as well as a simplified and more practical trilinear version of it. Concerning the demand, several methods for characterising the Floor Response Spectra of reinforced concrete buildings are tested through case studies.
Resumo:
The established isotropic tomographic models show the features of subduction zones in terms of seismic velocity anomalies, but they are generally subjected to the generation of artifacts due to the lack of anisotropy in forward modelling. There is evidence for the significant influence of seismic anisotropy in the mid-upper mantle, especially for boundary layers like subducting slabs. As consequence, in isotropic models artifacts may be misinterpreted as compositional or thermal heterogeneities. In this thesis project the application of a trans-dimensional Metropolis-Hastings method is investigated in the context of anisotropic seismic tomography. This choice arises as a response to the important limitations introduced by traditional inversion methods which use iterative procedures of optimization of a function object of the inversion. On the basis of a first implementation of the Bayesian sampling algorithm, the code is tested with some cartesian two-dimensional models, and then extended to polar coordinates and dimensions typical of subduction zones, the main focus proposed for this method. Synthetic experiments with increasing complexity are realized to test the performance of the method and the precautions for multiple contexts, taking into account also the possibility to apply seismic ray-tracing iteratively. The code developed is tested mainly for 2D inversions, future extensions will allow the anisotropic inversion of seismological data to provide more realistic imaging of real subduction zones, less subjected to generation of artifacts.
Resumo:
The scope of this paper is to reflect on the theoretical construction in the constitution of the sociology of health, still called medical sociology in some countries. Two main ideas constitute the basis for this: interdisciplinarity and the degree of articulation in the fields of medicine and sociology. We sought to establish a dialogue with some dimensions - macro/micro, structure/action - that constitute the basis for understanding medicine/health in relation to the social/sociological dimension. The main aspects of these dimensions are initially presented. Straus' two medical sociologies and the theory/application impasses are then addressed, as well as the dilemmas of the sociology of medicine in the 1960s and 1970s. From these analyses the theoretical production before 1970 is placed as a counterpoint. Lastly, the sociology of health is seen in the general context of sociology, which underwent a fragmentation process from 1970 with effects in all subfields of the social sciences. This process involves a rethinking of the theoretical issues in a broadened spectrum of possibilities. The 1980s are highlighted when theoretical issues in the sociology of health are reinvigorated and the issue of interdisciplinarity is once again addressed.
Resumo:
The article discusses the possibility of applying Kuhn's concept of paradigm to collective health. The concept and its use in epidemiology, planning and the social sciences are reviewed briefly. The study stresses the multi-paradigmatic character of collective health, resulting from the convergence of multiple epistemologies and the involvement of diverse fields such as the biological sciences, philosophy, the social sciences and humanities.
Resumo:
The present paper describes a novel, simple and reliable differential pulse voltammetric method for determining amitriptyline (AMT) in pharmaceutical formulations. It has been described for many authors that this antidepressant is electrochemically inactive at carbon electrodes. However, the procedure proposed herein consisted in electrochemically oxidizing AMT at an unmodified carbon nanotube paste electrode in the presence of 0.1 mol L(-1) sulfuric acid used as electrolyte. At such concentration, the acid facilitated the AMT electroxidation through one-electron transfer at 1.33 V vs. Ag/AgCl, as observed by the augmentation of peak current. Concerning optimized conditions (modulation time 5 ms, scan rate 90 mV s(-1), and pulse amplitude 120 mV) a linear calibration curve was constructed in the range of 0.0-30.0 μmol L(-1), with a correlation coefficient of 0.9991 and a limit of detection of 1.61 μmol L(-1). The procedure was successfully validated for intra- and inter-day precision and accuracy. Moreover, its feasibility was assessed through analysis of commercial pharmaceutical formulations and it has been compared to the UV-vis spectrophotometric method used as standard analytical technique recommended by the Brazilian Pharmacopoeia.
Resumo:
The present work compared the local injection of mononuclear cells to the spinal cord lateral funiculus with the alternative approach of local delivery with fibrin sealant after ventral root avulsion (VRA) and reimplantation. For that, female adult Lewis rats were divided into the following groups: avulsion only, reimplantation with fibrin sealant; root repair with fibrin sealant associated with mononuclear cells; and repair with fibrin sealant and injected mononuclear cells. Cell therapy resulted in greater survival of spinal motoneurons up to four weeks post-surgery, especially when mononuclear cells were added to the fibrin glue. Injection of mononuclear cells to the lateral funiculus yield similar results to the reimplantation alone. Additionally, mononuclear cells added to the fibrin glue increased neurotrophic factor gene transcript levels in the spinal cord ventral horn. Regarding the motor recovery, evaluated by the functional peroneal index, as well as the paw print pressure, cell treated rats performed equally well as compared to reimplanted only animals, and significantly better than the avulsion only subjects. The results herein demonstrate that mononuclear cells therapy is neuroprotective by increasing levels of brain derived neurotrophic factor (BDNF) and glial derived neurotrophic factor (GDNF). Moreover, the use of fibrin sealant mononuclear cells delivery approach gave the best and more long lasting results.
Resumo:
It is well known that long term use of shampoo causes damage to human hair. Although the Lowry method has been widely used to quantify hair damage, it is unsuitable to determine this in the presence of some surfactants and there is no other method proposed in literature. In this work, a different method is used to investigate and compare the hair damage induced by four types of surfactants (including three commercial-grade surfactants) and water. Hair samples were immersed in aqueous solution of surfactants under conditions that resemble a shower (38 °C, constant shaking). These solutions become colored with time of contact with hair and its UV-vis spectra were recorded. For comparison, the amount of extracted proteins from hair by sodium dodecyl sulfate (SDS) and by water were estimated by the Lowry method. Additionally, non-pigmented vs. pigmented hair and also sepia melanin were used to understand the washing solution color and their spectra. The results presented herein show that hair degradation is mostly caused by the extraction of proteins, cuticle fragments and melanin granules from hair fiber. It was found that the intensity of solution color varies with the charge density of the surfactants. Furthermore, the intensity of solution color can be correlated to the amount of proteins quantified by the Lowry method as well as to the degree of hair damage. UV-vis spectrum of hair washing solutions is a simple and straightforward method to quantify and compare hair damages induced by different commercial surfactants.
Resumo:
In this study, the transmission-line modeling (TLM) applied to bio-thermal problems was improved by incorporating several novel computational techniques, which include application of graded meshes which resulted in 9 times faster in computational time and uses only a fraction (16%) of the computational resources used by regular meshes in analyzing heat flow through heterogeneous media. Graded meshes, unlike regular meshes, allow heat sources to be modeled in all segments of the mesh. A new boundary condition that considers thermal properties and thus resulting in a more realistic modeling of complex problems is introduced. Also, a new way of calculating an error parameter is introduced. The calculated temperatures between nodes were compared against the results obtained from the literature and agreed within less than 1% difference. It is reasonable, therefore, to conclude that the improved TLM model described herein has great potential in heat transfer of biological systems.
Resumo:
It is well known that trichomes protect plant organs, and several studies have investigated their role in the adaptation of plants to harsh environments. Recent studies have shown that the production of hydrophilic substances by glandular trichomes and the deposition of this secretion on young organs may facilitate water retention, thus preventing desiccation and favouring organ growth until the plant develops other protective mechanisms. Lychnophora diamantinana is a species endemic to the Brazilian 'campos rupestres' (rocky fields), a region characterized by intense solar radiation and water deficits. This study sought to investigate trichomes and the origin of the substances observed on the stem apices of L. diamantinana. Samples of stem apices, young and expanded leaves were studied using standard techniques, including light microscopy and scanning and transmission electron microscopy. Histochemical tests were used to identify the major groups of metabolites present in the trichomes and the hyaline material deposited on the apices. Non-glandular trichomes and glandular trichomes were observed. The material deposited on the stem apices was hyaline, highly hydrophilic and viscous. This hyaline material primarily consists of carbohydrates that result from the partial degradation of the cell wall of uniseriate trichomes. This degradation occurs at the same time that glandular trichomes secrete terpenoids, phenolic compounds and proteins. These results suggest that the non-glandular trichomes on the leaves of L. diamantinana help protect the young organ, particularly against desiccation, by deposition of highly hydrated substances on the apices. Furthermore, the secretion of glandular trichomes probably repels herbivore and pathogen attacks.
Resumo:
To determine the most adequate number and size of tissue microarray (TMA) cores for pleomorphic adenoma immunohistochemical studies. Eighty-two pleomorphic adenoma cases were distributed in 3 TMA blocks assembled in triplicate containing 1.0-, 2.0-, and 3.0-mm cores. Immunohistochemical analysis against cytokeratin 7, Ki67, p63, and CD34 were performed and subsequently evaluated with PixelCount, nuclear, and microvessel software applications. The 1.0-mm TMA presented lower results than 2.0- and 3.0-mm TMAs versus conventional whole section slides. Possibly because of an increased amount of stromal tissue, 3.0-mm cores presented a higher microvessel density. Comparing the results obtained with one, two, and three 2.0-mm cores, there was no difference between triplicate or duplicate TMAs and a single-core TMA. Considering the possible loss of cylinders during immunohistochemical reactions, 2.0-mm TMAs in duplicate are a more reliable approach for pleomorphic adenoma immunohistochemical study.