966 resultados para Secularization - Religious Transit - Pentecostalism - Assembly of God Religious Identities


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new kind of self-assembled monolayer (SAM) formed in aqueous solution through the pre-formed inclusion complexes (abbreviated CD . C-n) between alpha-, beta-cyclodextrins (CDs) and alkanethiols (CH3(CH2)(n-1)SH, n = 10, 14 and 18) was prepared successfully on gold electrodes. High-resolution H-1 NMR was used to confirm the formation of CD . C-n. X-ray photoelectron spectroscopy, cyclic voltammetry and chronoamperometry were used to characterize the resulting SAMs (denoted as M-CD . Cn). It was found that M-CD . Cn were more stable against repeated potential cycling in 0.5 M H2SO4 than SAMs of CH3(CH2)(n-1)SH (denoted as M-Cn), with a relative sequence of Mbeta-CD . Cn > Malpha-CD . Cn > M-Cn. In addition, an order of blocking the electron transfer between gold electrodes and redox couples (both Fe(CN)(6)(3-) and Ru(NH3)(6)(3+)) in solution, M-CD . C10 > M-CD . C14 > M-CD . C18, was observed. A plausible explanation is provided to elucidate some of the observations. (C) 1997 Elsevier Science S.A.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electroactive self-assembled monolayers (SAMs) with well-defined electrochemical responses were prepared by spontaneous assembly of the inclusion complexes (CD/C8VComegaSH) of viologen-attached alkanethiols (C8VComegaSH) and alpha- and beta-cyclodextrin (CD). They were characterized by X-ray photoelectron spectroscopy and cyclic voltammetry. The results demonstrate that the chemisorption process of CD/C8VComegaSH on gold substrate occurs through S-Au bonds, and that the redox sites in SAMs of CD/C8VComegaSH are in a much more uniform environment than those in SAMs of C8VComegaSH.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The hydrosol of SnO2 nanoparticles (NP) have been prepared by colloid chemistry method. The composite LB monolayer and multilayer of SnO2 NP-AA have been obtained by LB technique at the gas-liquid interface of the hydrosol subphase. The structures of the monolayer and multilayer were characterized by IR, UV-Vis, small angle X-ray diffraction spectroscopy and TEM technique, The results indicate that the coverage of SnO2 NP at the composite monolayer's surface is high and the sites of SnO2 NP are similar. The multilayer has good periodic structure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The chloroplasts, mitochondria, and protoplasm devoid of mature chloroplasts (PMC) of Bryopsis hypnoides Lamouroux were isolated by low-speed and sucrose density centrifugation. The PMC aggregated in artificial seawater, and then protoplasts without mature chloroplasts (PtMCs) were formed. Transmission electron microscopy and cytochemical studies indicated that there were mitochondria, nuclei, vesicles, and other small cell organelles in the PtMCs. Scanning electron microscopy showed that there were holes on the surface of 1-h PtMCs and then fewer holes on the surface of 24-h PtMCs, suggesting that a healing process occurred. The plasma membrane was formed over the surface of the PtMCs. However, the cell wall was not regenerated, and the newly formed PtMCs were ruptured and died in 3 days. Light intensity during alga maintenance before use influenced significantly (one-way ANOVA, P < 0.0001) on the number of PtMCs formed; the highest number of PtMCs was formed at 20A mu mol/(m(2) s). When isolated chloroplasts were transferred into seawater, there were only two or three chloroplasts aggregated together. However, isolated mitochondria and the mixed six layers of cell organelles (separated by sucrose density centrifugation) could not aggregate in the artificial seawater. This indicates that the conjunction of cell organelles is important for their aggregation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Scanning tunneling microscope was used to investigate the in vitro assembly of R-phycoerythrin (R-PE) from the marine red alga Polysiphonia urceolata. The results showed that R-PE molecules assembled together by disc-to-disc while absorbing on HOPG surface, which just looked like the rods in the phycobilisomes. When the water-soluble R-PE was dissolved in 2% ethanol/water spreading solution, they could form monolayer film at the air/water interface. Similar disc-to-disc array of R-PE was constituted in the two-dimensional Langmuir-Blodgett film by the external force. It could be concluded that, apart from the key role of time linker polypeptides, the in vivo assembly of phycobiliproteins into phycobilisomes is also dependent on the endogenous properties of phycobiliprotein themselves.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The cell organelles of the coenocytic alga Codium fragile (Sur.) Hariot aggregated rapidly and protoplasts were formed when its protoplasm was extruded out in seawater. Continuous observation showed that there were long and gelatinous threads connecting the cell organelles. The threads contracted, and thus the cell organelles aggregated into protoplasmic masses. The enzyme digestion experiments and Coomassie Brilliant Blue and Anthrone stainings showed that the long and gelatinous threads involved in the formation of the protoplasts might include protein and saccharides as structure components. Nile Red staining indicated that the protoplast primary envelope was non-lipid at first, and then lipid materials integrated into its surface gradually. The fluorescent brightener staining indicated that the cell wall did not regenerate in the newly formed protoplasts and they all disintegrated within 72 h after formation. Transmission electron microscopy of the cell wall of wild C. fragile showed electron-dense material embedded in the whole cell wall at regular intervals. The experiments indicated that C. fragile would be a suitable model alga for studying the formation of protoplasts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

T. G. Williams, J.J. Rowland, and Lee M.H., Robotic Assembly of Naturally Varying Food Items via Teaching by Example, 9th Int. Symp. on Intelligent Robotic Systems (SIRS 2001), July 2001, France, pp133-142.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A sermon preached to the General Assembly reporting on the mission efforts of the church.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

http://www.archive.org/details/upontheearththem013276mbp

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Colloidal photonic crystals (PhCs) possess a periodic dielectric structure which gives rise to a photonic band gap (PBG) and offer great potential in the ability to modify or control light at visible wavelengths. Although the refractive index contrast between the void or infill and the matrix material is paramount for photonics applications, integration into real optoelectronics devices will require a range of added functionalities such as conductivity. As such, colloidal PhCs can be used as templates to direct infiltration of other functional materials using a range of deposition strategies. The work in this thesis seeks to address two challenges; first to develop a reproducible strategy based on Langmuir-Blodgett (LB) deposition to assemble high quality colloidal PhCs based on silica with precise film thickness as most other assembly methods suffer from a lack of reproducibility thickness control. The second is to investigate the use of LBdeposited colloidal PhCs as templates for infiltration with conducting metal oxide materials using vapor phase deposition techniques. Part of this work describes the synthesis and assembly of colloidal silica spheres with different surface chemical functionalities at the air-water interface in preparation for LB deposition. Modification of surface funtionality conferred varying levels of hydrophobicity upon the particles. The behaviour of silica monolayer films at the air-water interface was characterised by Brewster Angle Microscopy and surface pressure isotherms with a view to optimising the parameters for LB deposition of multilayer colloidal PhC films. Optical characterisation of LB-fabricated colloidal PhCs indicated high quality photonic behaviour, exhibiting a pseudo PBG with a sharp Bragg diffraction peak in the visible region and reflectance intensities greater than 60%. Finally the atomic layer deposition (ALD) of nominally undoped ZnO and aluminium doped ZnO (Al-doped ZnO) inside the pores of a colloidal PhC assembled by the LB technique was carried out. ALD growth in this study was performed using trimethyl aluminium (TMA) and water as precursors for the alumina and diethyl zinc (DEZn) and water for the ZnO. The ZnO:Al films were grown in a laminate mode, where DEZn pulses were substituted for TMA pulses in the sequences with a Zn:Al ratio 19:1. The ALD growth of ZnO and ZnO:Al in colloidal PhCs was shown to be highly conformal, tuneable and reproducible whilst maintaining excellent photonic character. Furthermore, at high levels of infiltration the opal composite films demonstrated significant conductivity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The de novo design of membrane proteins remains difficult despite recent advances in understanding the factors that drive membrane protein folding and association. We have designed a membrane protein PRIME (PoRphyrins In MEmbrane) that positions two non-natural iron diphenylporphyrins (Fe(III)DPP's) sufficiently close to provide a multicentered pathway for transmembrane electron transfer. Computational methods previously used for the design of multiporphyrin water-soluble helical proteins were extended to this membrane target. Four helices were arranged in a D(2)-symmetrical bundle to bind two Fe(II/III) diphenylporphyrins in a bis-His geometry further stabilized by second-shell hydrogen bonds. UV-vis absorbance, CD spectroscopy, analytical ultracentrifugation, redox potentiometry, and EPR demonstrate that PRIME binds the cofactor with high affinity and specificity in the expected geometry.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multivalency is the increase in avidity resulting from the simultaneous interaction of multiple ligands with multiple receptors. This phenomenon, seen in antibody-antigen and virus-cell membrane interactions, is useful in designing bioinspired materials for targeted delivery of drugs or imaging agents. While increased avidity offered by multivalent targeting is attractive, it can also promote nonspecific receptor interaction in nontarget tissues, reducing the effectiveness of multivalent targeting. Here, we present a thermal targeting strategy--dynamic affinity modulation (DAM)--using elastin-like polypeptide diblock copolymers (ELP(BC)s) that self-assemble from a low-affinity to high-avidity state by a tunable thermal "switch", thereby restricting activity to the desired site of action. We used an in vitro cell binding assay to investigate the effect of the thermally triggered self-assembly of these ELP(BC)s on their receptor-mediated binding and cellular uptake. The data presented herein show that (1) ligand presentation does not disrupt ELP(BC) self-assembly; (2) both multivalent ligand presentation and upregulated receptor expression are needed for receptor-mediated interaction; (3) increased size of the hydrophobic segment of the block copolymer promotes multivalent interaction with membrane receptors, potentially due to changes in the nanoscale architecture of the micelle; and (4) nanoscale presentation of the ligand is important, as presentation of the ligand by micrometer-sized aggregates of an ELP showed a low level of binding/uptake by receptor-positive cells compared to its presentation on the corona of a micelle. These data validate the concept of thermally triggered DAM and provide rational design parameters for future applications of this technology for targeted drug delivery.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Single-molecule sequencing instruments can generate multikilobase sequences with the potential to greatly improve genome and transcriptome assembly. However, the error rates of single-molecule reads are high, which has limited their use thus far to resequencing bacteria. To address this limitation, we introduce a correction algorithm and assembly strategy that uses short, high-fidelity sequences to correct the error in single-molecule sequences. We demonstrate the utility of this approach on reads generated by a PacBio RS instrument from phage, prokaryotic and eukaryotic whole genomes, including the previously unsequenced genome of the parrot Melopsittacus undulatus, as well as for RNA-Seq reads of the corn (Zea mays) transcriptome. Our long-read correction achieves >99.9% base-call accuracy, leading to substantially better assemblies than current sequencing strategies: in the best example, the median contig size was quintupled relative to high-coverage, second-generation assemblies. Greater gains are predicted if read lengths continue to increase, including the prospect of single-contig bacterial chromosome assembly.