964 resultados para Seawater.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transition of Zn, Cu, Cd, and Pb into solution is studied for experimental suspensions of coastal marine sediments with different degrees of pollution from the Amur Bay (Sea of Japan) over 30-70 days. Concentrations of dissolved metals were measured by a voltammetry method. Transition of Zn and Cd into solution was shown to be linearly dependent on initial pollution of sediments with these metals. Cadmium mobilization is due to gradual degradation of organic matter from sediments. Under degradation processes Zn quickly goes into solution during sedimentation and from silts, while in case of polluted sediments it is slowly mobilized during oxidation of sulfides. Behavior of Cu is complex because of binding of mobilized metal by dissolved organic compounds. Transition of lead into solution is negligible. Calculation of potential transition of metals from sediments into water on the basis of experimental data and its comparison with downward sedimentary flux showed that in the studied area secondary pollution of water by aerobic degradation of sediments is possible only for Cd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ocean acidification and associated changes in seawater carbonate chemistry negatively influence calcification processes and depress metabolism in many calcifying marine invertebrates. We present data on the cephalopod mollusc Sepia officinalis, an invertebrate that is capable of not only maintaining calcification, but also growth rates and metabolism when exposed to elevated partial pressures of carbon dioxide (pCO2). During a 6 wk period, juvenile S. officinalis maintained calcification under ~4000 and ~6000 ppm CO2, and grew at the same rate with the same gross growth efficiency as did control animals. They gained approximately 4% body mass daily and increased the mass of their calcified cuttlebone by over 500%. We conclude that active cephalopods possess a certain level of pre-adaptation to long-term increments in carbon dioxide levels. Our general understanding of the mechanistic processes that limit calcification must improve before we can begin to predict what effects future ocean acidification will have on calcifying marine invertebrates.