979 resultados para Seasons.
Resumo:
In the dry tropics of northern Australia heifers are generally weaned mid-year at about six months of age and experience two dry seasons and a wet season prior to first mating at 2 years of age when only 60% are likely to conceive (Entwistle 19830. Pre-mating liveweight (PMLW) explains much of the variation in conception rate, but year effects explain further variations (Rudder et al 1985).
Resumo:
Brown spot (caused by Alternaria alternata) is a major disease of citrus in subtropical areas of Australia. A number of chemicals, the strobilurins azoxystrobin, trifloxystrobin, pyraclostrobin and methoxycrylate, a plant activator (acibenzolar), copper hydroxide, mancozeb, captan, iprodione and chlorothalonil/pyrimthanil were tested in the field for its control. Over three seasons, trees in a commercial orchard received 16, 14 and 7 fungicide sprays, respectively, commencing at flowering in the first season, and petal fall in the later seasons. In all experiments, the strobilurins used alone, or incorporated with copper and mancozeb, were as effective as, or better than the industry standard of copper and mancozeb alone. The only exception was trifloxystrobin, which when used alone was less effective than the industry standard. Acibenzolar used alone was ineffective. Applying a mixture of azoxystrobin and acibenzolar was found to reduce the incidence of brown spot compared with applying azoxystrobin alone but, in either case, disease levels were not found to be significantly different to the industry standard. Captan, iprodione and chlorothalonil/pyrimthanil were as effective as the industry standard. The incidence and severity of rind damage were significantly lowest in the azoxystrobin, methoxycrylate, iprodione and chlorothalonil/pyrimthanil treatments. Medium and high rates of trifloxystrobin (0.07 g/L, 0 .15 g/L) and pyraclostrobin (0.8 g/L, 1.2 g/L) applied alone were the only treatments found to be IPM-incompatible as shown by the elevated level of scale infection on fruit.
Resumo:
Different degrees of severity of threshing were imposed during combine-harvesting of seed of Gatton panic, a cultivar of Panicum maximum , to determine effects of degree of threshing damage on subsequent properties of seed. Threshing cylinder peripheral speeds and concave clearances covering the normal range employed commercially were varied experimentally in the harvest of 2 crops grown in north Queensland. Harvested seed was dried and cleaned, then stored under ambient conditions. The extent of physical damage was measured, and samples were tested at intervals for viability, germination, dormancy and seedling emergence from soil in a glasshouse and in the field over the 2 seasons following harvest. Physical damage increased as peripheral rotor speed rose and (though less markedly) as concave clearance was reduced. As the level of damage increased, viability was progressively reduced, life expectancy was shortened, and dormancy was broken. When the consequences were measured as seedling emergence from soil, the adverse effects on viability tended to cancel out the benefits of dormancy-breaking, leaving few net differences attributable to the degree of threshing severity. We concluded that there would be no value in trying to manipulate the quality of seed produced for normal commercial use through choice of cylinder settings, but that deliberate light or heavy threshing could benefit special-purpose seed, destined, respectively, for long-term storage or immediate use.
Resumo:
The robustness of multivariate calibration models, based on near infrared spectroscopy, for the assessment of total soluble solids (TSS) and dry matter (DM) of intact mandarin fruit (Citrus reticulata cv. Imperial) was assessed. TSS calibration model performance was validated in terms of prediction of populations of fruit not in the original population (different harvest days from a single tree, different harvest localities, different harvest seasons). Of these, calibration performance was most affected by validation across seasons (signal to noise statistic on root mean squared error of prediction of 3.8, compared with 20 and 13 for locality and harvest day, respectively). Procedures for sample selection from the validation population for addition to the calibration population (‘model updating’) were considered for both TSS and DM models. Random selection from the validation group worked as well as more sophisticated selection procedures, with approximately 20 samples required. Models that were developed using samples at a range of temperatures were robust in validation for TSS and DM.
Resumo:
The prominent roles of birds, often mentioned in historical sources, are not well reflected in archaeological research. Absence or scarcity of bird bones in archaeological assemblages has been often seen as indication of a minor role of birds in the prehistoric economy or ideology, or explained by taphonomic loss. Few studies exist where birds form the basis for extensive archaeological interpretation. In this doctoral dissertation bird bone material from various Stone Age sites in the Baltic Sea region is investigated. The study period is approximately 7000-3400 BP, comprising mainly Neolithic cultures. The settlement material comes from Finland, Åland, Gotland, Saaremaa and Hiiumaa. Osteological materials are used for studying the economic and cultural importance of birds, fowling methods and principal fowling seasons. The bones were identified and earlier identifications partially checked with help of a reference material of modern skeletons. Fracture analysis was used in order to study the deposition history of bones at Ajvide settlement site. Birds in burials at two large cemeteries, Ajvide on Gotland and Zvejnieki in northern Latvia were investigated in order to study the roles of birds in burial practices. My study reveals that the economic importance of birds is at least seasonally often more prominent than usually thought, and varies greatly in different areas. Fowling has been most important in coastal areas, and especially during the breeding season. Waterbirds and grouse species were generally the most important groups in Finnish Stone Age economy. The identified species composition shows much resemblance to contemporary hunting with species such as the mallard and capercaillie commonly found. Burial materials and additional archaeological evidence from Gotland, Latvia and some other parts of northern Europe indicate that birds –e.g., jay, whooper swan, ducks – have been socially and ideologically important for the studied groups (indicating a place in the belief system, e.g. clan totemism). The burial finds indicate that some common ideas about waterbirds (perhaps as messengers or spirit helpers) might have existed in the northern European Stone Age.
Resumo:
The development of innovative methods of stock assessment is a priority for State and Commonwealth fisheries agencies. It is driven by the need to facilitate sustainable exploitation of naturally occurring fisheries resources for the current and future economic, social and environmental well being of Australia. This project was initiated in this context and took advantage of considerable recent achievements in genomics that are shaping our comprehension of the DNA of humans and animals. The basic idea behind this project was that genetic estimates of effective population size, which can be made from empirical measurements of genetic drift, were equivalent to estimates of the successful number of spawners that is an important parameter in process of fisheries stock assessment. The broad objectives of this study were to 1. Critically evaluate a variety of mathematical methods of calculating effective spawner numbers (Ne) by a. conducting comprehensive computer simulations, and by b. analysis of empirical data collected from the Moreton Bay population of tiger prawns (P. esculentus). 2. Lay the groundwork for the application of the technology in the northern prawn fishery (NPF). 3. Produce software for the calculation of Ne, and to make it widely available. The project pulled together a range of mathematical models for estimating current effective population size from diverse sources. Some of them had been recently implemented with the latest statistical methods (eg. Bayesian framework Berthier, Beaumont et al. 2002), while others had lower profiles (eg. Pudovkin, Zaykin et al. 1996; Rousset and Raymond 1995). Computer code and later software with a user-friendly interface (NeEstimator) was produced to implement the methods. This was used as a basis for simulation experiments to evaluate the performance of the methods with an individual-based model of a prawn population. Following the guidelines suggested by computer simulations, the tiger prawn population in Moreton Bay (south-east Queensland) was sampled for genetic analysis with eight microsatellite loci in three successive spring spawning seasons in 2001, 2002 and 2003. As predicted by the simulations, the estimates had non-infinite upper confidence limits, which is a major achievement for the application of the method to a naturally-occurring, short generation, highly fecund invertebrate species. The genetic estimate of the number of successful spawners was around 1000 individuals in two consecutive years. This contrasts with about 500,000 prawns participating in spawning. It is not possible to distinguish successful from non-successful spawners so we suggest a high level of protection for the entire spawning population. We interpret the difference in numbers between successful and non-successful spawners as a large variation in the number of offspring per family that survive – a large number of families have no surviving offspring, while a few have a large number. We explored various ways in which Ne can be useful in fisheries management. It can be a surrogate for spawning population size, assuming the ratio between Ne and spawning population size has been previously calculated for that species. Alternatively, it can be a surrogate for recruitment, again assuming that the ratio between Ne and recruitment has been previously determined. The number of species that can be analysed in this way, however, is likely to be small because of species-specific life history requirements that need to be satisfied for accuracy. The most universal approach would be to integrate Ne with spawning stock-recruitment models, so that these models are more accurate when applied to fisheries populations. A pathway to achieve this was established in this project, which we predict will significantly improve fisheries sustainability in the future. Regardless of the success of integrating Ne into spawning stock-recruitment models, Ne could be used as a fisheries monitoring tool. Declines in spawning stock size or increases in natural or harvest mortality would be reflected by a decline in Ne. This would be good for data-poor fisheries and provides fishery independent information, however, we suggest a species-by-species approach. Some species may be too numerous or experiencing too much migration for the method to work. During the project two important theoretical studies of the simultaneous estimation of effective population size and migration were published (Vitalis and Couvet 2001b; Wang and Whitlock 2003). These methods, combined with collection of preliminary genetic data from the tiger prawn population in southern Gulf of Carpentaria population and a computer simulation study that evaluated the effect of differing reproductive strategies on genetic estimates, suggest that this technology could make an important contribution to the stock assessment process in the northern prawn fishery (NPF). Advances in the genomics world are rapid and already a cheaper, more reliable substitute for microsatellite loci in this technology is available. Digital data from single nucleotide polymorphisms (SNPs) are likely to super cede ‘analogue’ microsatellite data, making it cheaper and easier to apply the method to species with large population sizes.
Resumo:
This study highlights the importance of considering how seasonality of rainfall affects availability of resources and consequently species distributions within tropical ecosystems. The endangered northern bettong, Bettongia tropica Wakefield is thought to be restricted to habitats where seasonal availability of hypogeous fungi, their principal food resource, remains high. To test this hypothesis fungal abundance was quantified in the early wet, late wet, early dry and late dry seasons within known bettong habitat. A relationship was found between precipitation and fungal availability, with the abundance of hypogeous fungi being significantly lower in the late dry season. Fungal availability correlated strongly with the seasonal rainfall pattern determined from 74-year monthly means. This contrasts with a previous study where mycophagy, measured by faecal analysis, remained high across seasons presumably because of aseasonal rainfall during that study period. Alloteropsis semialata R.Br. (cockatoo grass) use by bettongs increased significantly during the period of low fungal availability. This suggests that the importance of cockatoo grass as an alternative food resource during annual and extended dry periods has previously been underestimated. With the frequency and intensity of drought expected to increase with global climate change, these findings have significant implications for bettong management. The important and possibly equivalent dependence of B. tropica on both hypogeous fungi and A. semialata helps to explain their habitat preference and identifies this species as a true ecotonal specialist.
Resumo:
Pseudocercospora macadamiae is an important pathogen of macadamia in Australia, causing a disease known as husk spot. Growers strive to control the disease with a number of carbendazim and copper treatments. The aim of this study was to consider the macadamia fruit developmental stage at which fungicide application is most effective against husk spot, and whether application of copper-only applications at full-size fruit developmental stage toward the end of the season contributed to effective disease control. Fungicides were applied to macadamia trees at four developmental stages in three orchards in two subsequent production seasons. The effects of the treatments on disease incidence and severity were quantified using area under disease progress curve (AUDPC) and logistic regression models. Although disease incidence varied between cultivars, incidence and severity on cv. A16 showed consistent differences between the treatments. Most significant reduction in husk spot incidence occurred when spraying commenced at match-head sized-fruit developmental stage. All treatments significantly reduced husk spot incidence and severity compared with the untreated controls, and a significant positive linear relationship (R2 = 73%) between AUDPC and severity showed that timing of the first fungicide application is important for effective disease control. Application of fungicide at full-size fruit stage reduced disease incidence but had no impact on premature fruit drop.
Resumo:
A study was undertaken from 2004 to 2007 to investigate factors associated with decreased efficacy of metalaxyl to manage damping-off of cucumber in Oman. A survey over six growing seasons showed that growers lost up to 14.6% of seedlings following application of metalaxyl. No resistance to metalaxyl was found among Pythium isolates. Damping-off disease in the surveyed greenhouses followed two patterns. In most (69%) greenhouses, seedling mortality was found to occur shortly after transplanting and decrease thereafter (Phase-I). However, a second phase of seedling mortality (Phase-II) appeared 9-14 d after transplanting in about 31% of the surveyed greenhouses. Analysis of the rate of biodegradation of metalaxyl in six greenhouses indicated a significant increase in the rate of metalaxyl biodegradation in greenhouses, which encountered Phase-II damping-off. The half-life of metalaxyl dropped from 93 d in soil, which received no previous metalaxyl treatment to 14 d in soil, which received metalaxyl for eight consecutive seasons, indicating an enhanced rate of metalaxyl biodegradation after repeated use. Multiple applications of metalaxyl helped reduce the appearance of Phase-II damping-off. This appears to be the first report of rapid biodegradation of metalaxyl in greenhouse soils and the first report of its association with appearance of a second phase of mortality in cucumber seedlings.
Resumo:
A study was undertaken in 2004 and 2005 to characterize pathogens associated with damping-off of greenhouse-grown cucumber seedlings in 13 districts in Oman. Identification of Pythium to the species level was based on sequences of the internal transcribed spacer (ITS) of the ribosomal DNA. Of the 98 Pythium isolates collected during the survey, Pythium aphanidermatum, P. spinosum, P. splendens and P. oligandrum accounted for 76%, 22%, 1% and 1%, respectively. Pythium aphanidermatum was isolated from all of the districts, while P. spinosum was isolated from seven districts. Pathogenicity tests showed inter- and intraspecific variation in aggressiveness between Pythium species. Pythium aphanidermatum, P. spinosum and P. splendens were found to be highly aggressive at 25°C. However, the aggressiveness of P. spinosum decreased when the temperature was raised to 30°C, which was found to correspond to the lower frequency of isolation of P. spinosum in the warmer seasons, compared to the cooler time of the year. Pythium aphanidermatum exhibited limited intraspecific variation in the sequences of the ITS region of the rDNA and showed 100% similarity to the corresponding P. aphanidermatum sequences from GenBank. The ITS sequence data, as well as morphological characteristics of P. spinosum isolates, showed a high level of similarity within and between P. spinosum and P. kunmingense, and suggested that the two species were synonymous. This study represents the first report of P. spinosum, P. splendens and P. oligandrum in Oman.
Resumo:
In south-eastern Queensland, Australia, sorghum planted in early spring usually escapes sorghum midge, Stenodiplosis sorghicola, attack. Experiments were conducted to better understand the role of winter diapause in the population dynamics of this pest. Emergence patterns of adult midge from diapausing larvae on the soil surface and at various depths were investigated during spring to autumn of 1987/88–1989/90. From 1987/88 to 1989/90, 89%, 65% and 98% of adult emergence, respectively, occurred during November and December. Adult emergence from larvae diapausing on the soil surface was severely reduced due to high mortality attributed to surface soil temperatures in excess of 40°C, with much of this mortality occurring between mid-September and mid-October. Emergence of adults from the soil surface was considerably delayed in the 1988/89 season compared with larvae buried at 5 or 10 cm which had similar emergence patterns for all three seasons. In 1989/90, when a 1-cm-deep treatment was included, there was a 392% increase in adult emergence from this treatment compared with deeper treatments. Some diapausing larvae on the surface did not emerge at the end of summer in only 1 year (1989/90), when 28.0% of the larvae on the surface remained in diapause, whereas only 0.8% of the buried larvae remained in diapause. We conclude that the pattern of emergence explains why spring plantings of sorghum in south-eastern Queensland usually escape sorghum midge attack.
Resumo:
In Australia, factors such as local planning processes, urban encroachment into rural areas and intensification of the poultry industry have increased the potential for odour and dust nuisance. At present, accurate estimates of odour emissions from mechanically ventilated poultry housing systems do not exist for Australian conditions. This has made the poultry industry vulnerable to unsubstantiated criticism. Recently, the Australian poultry industry have made a significant investment in research to obtain accurate estimates of odour, dust and volatile chemical emission rates from typical poultry housing systems. This paper describes the measurement of odour emissions from tunnel ventilated poultry housing systems in different climatic zones in Queensland and Victoria, Australia (humid sub-tropical and Mediterranean respectively) during two seasons (summer and winter). Samples were collected at defined intervals over typical batch production cycles to define the odour emission profiles. These samples were analysed using dynamic olfactometry according to the Australian Standard 4323.3 to derive the odour concentration values. Ventilation rates were measured concurrently, allowing the calculation of odour emission rates. Odour concentration and emission rates were assessed in terms of ventilation rate, ambient and shed air temperature and relative humidity and litter moisture status. Odour emission rates varied with bird age. Seasonal differences in odour emission rate were also observed.
Resumo:
Quantifying the local crop response to irrigation is important for establishing adequate irrigation management strategies. This study evaluated the effect of irrigation applied with subsurface drip irrigation on field corn (Zea mays L.) evapotranspiration (ETc), yield, water use efficiencies (WUE = yield/ETc, and IWUE = yield/irrigation), and dry matter production in the semiarid climate of west central Nebraska. Eight treatments were imposed with irrigation amounts ranging from 53 to 356 mm in 2005 and from 22 to 226 mm in 2006. A soil water balance approach (based on FAO-56) was used to estimate daily soil water and ETc. Treatments resulted in seasonal ETc of 580-663 mm and 466-656 mm in 2005 and 2006, respectively. Yields among treatments differed by as much as 22% in 2005 and 52% in 2006. In both seasons, irrigation significantly affected yields, which increased with irrigation up to a point where irrigation became excessive. Distinct relationships were obtained each season. Yields increased linearly with seasonal ETc (R 2 = 0.89) and ETc/ETp (R 2 = 0.87) (ETp = ETc with no water stress). The yield response factor (ky), which indicates the relative reduction in yield to relative reduction in ETc, averaged 1.58 over the two seasons. WUE increased non-linearly with seasonal ETc and with yield. WUE was more sensitive to irrigation during the drier 2006 season, compared with 2005. Both seasons, IWUE decreased sharply with irrigation. Irrigation significantly affected dry matter production and partitioning into the different plant components (grain, cob, and stover). On average, the grain accounted for the majority of the above-ground plant dry mass (≈59%), followed by the stover (≈33%) and the cob (≈8%). The dry mass of the plant and that of each plant component tended to increase with seasonal ETc. The good relationships obtained in the study between crop performance indicators and seasonal ETc demonstrate that accurate estimates of ETc on a daily and seasonal basis can be valuable for making tactical in-season irrigation management decisions and for strategic irrigation planning and management.
Resumo:
Synthetic backcrossed-derived bread wheats (SBWs) from CIMMYT were grown in the Northwest of Mexico at Centro de Investigaciones Agrícolas del Noroeste (CIANO) and sites across Australia during three seasons. During three consecutive years Australia received “shipments” of different SBWs from CIMMYT for evaluation. A different set of lines was evaluated each season, as new materials became available from the CIMMYT crop enhancement program. These consisted of approximately 100 advanced lines (F7) per year. SBWs had been top and backcrossed to CIMMYT cultivars in the first two shipments and to Australian wheat cultivars in the third one. At CIANO, the SBWs were trialled under receding soil moisture conditions. We evaluated both the performance of each line across all environments and the genotype-by-environment interaction using an analysis that fits a multiplicative mixed model, adjusted for spatial field trends. Data were organised in three groups of multienvironment trials (MET) containing germplasm from shipment 1 (METShip1), 2 (METShip2), and 3 (METShip3), respectively. Large components of variance for the genotype × environment interaction were found for each MET analysis, due to the diversity of environments included and the limited replication over years (only in METShip2, lines were tested over 2 years). The average percentage of genetic variance explained by the factor analytic models with two factors was 50.3% for METShip1, 46.7% for METShip2, and 48.7% for METShip3. Yield comparison focused only on lines that were present in all locations within a METShip, or “core” SBWs. A number of core SBWs, crossed to both Australian and CIMMYT backgrounds, outperformed the local benchmark checks at sites from the northern end of the Australian wheat belt, with reduced success at more southern locations. In general, lines that succeeded in the north were different from those in the south. The moderate positive genetic correlation between CIANO and locations in the northern wheat growing region likely reflects similarities in average temperature during flowering, high evaporative demand, and a short flowering interval. We are currently studying attributes of this germplasm that may contribute to adaptation, with the aim of improving the selection process in both Mexico and Australia.
Resumo:
Neopolycystus sp. is the only primary egg parasitoid associated with the pest beetle Paropsis atomaria in subtropical eucalypt plantations, but its impact on its host populations is unknown. The simplified ecosystem represented by the plantation habitat, lack of interspecific competition for host and parasitoid, and the multivoltinism of the host population makes this an ideal system for quantifying the direct and indirect effects of egg parasitism, and hence, effects on host population dynamics. Within-, between- and overall-egg-batch parasitism rates were determined at three field sites over two field seasons, and up to seven host generations. The effect of exposure time (egg batch age), host density proximity to native forest and water sources on egg parasitism rates was also tested. Neopolycystus sp. exerts a significant influence on P. atomaria populations in Eucalyptus cloeziana. plantations in south-eastern Queensland, causing the direct (13%) and indirect (15%) mortality of almost one-third of all eggs in the field. Across seasons and generations, 45% of egg batches were parasitised, with a within-batch parasitism rate of around 30%. Between-batch parasitism increased up to 5-6 days after oviposition in the field, although within-batch parasitism rates generally did not. However, there were few apparent patterns to egg parasitism, with rates often varying significantly between sites and seasons.