970 resultados para Seasonal distribution
Resumo:
The present work aimed to evaluate the seasonal increment in diameter of Eucalyptus grandis trees for 24 months and its relationship with the climatic variables and fertilization with nitrogen and with sewer mud. The trees were planted in the spacing of 3 x 2 m and fertilized with nitrogen (planting, 6, 12, 18 months) and sewer mud (planting and 8 months). 20 trees were selected by treatment according witch the distribution of basal area and installed dendrometer bands at a 1.3 meter. The results showed a clear effect of the climatic variables on the seasonal increment in diameter of trees, being observed a delay period (lag) of 28 days for the answer of the trees in relation to the climatic variables. Regading to the fertilization effect, it was observed that the increment of trunk diameter was higher in the eucalypt trees with organic in relation to mineral fertilization with nitrogen.
Resumo:
Environmental conditions favor the predominance of dense populations of cyanobacteria in reservoirs in northeastern Brazil. The aim of this study was to understand cyanobacterial population dynamics in the rainy and dry seasons at two depths in the Arcoverde reservoir. Microalgae and cyanobacteria samples were collected during 24 hours with intervals of 4 hours (nycthemeral) at sub-surface and 10 m using a van Dorn bottle and a determined biomass. Physical and chemical variables were obtained and the data were analyzed using the principal component analysis (PCA). No nycthemeral variations in the taxonomic composition or distribution of the populations of cyanobacteria were found between the different times of day in either the rainy or dry season. In both seasons, the greatest biomass of the phytoplankton community was made up of cyanobacteria at two depths and all times of the day. Cylindrospermopsis raciborskii (Woloszynska) Seenayya et Subba Raju was dominant at all times of the day on both the surface and at the bottom. In the rainy season, the differences in cyanobacterial biomass between the surface and bottom were less significant than in the dry season. The differences in cyanobacterial biomass between surface and bottom were less pronounced than those found in the dry season. We concluded that a) physical variables better explain the alterations of species in the phytoplankton community in an environment dominated by cyanobacteria throughout the year; b) seasonal climatic factors associated to periods of stratification and de-stratification are important for alterations in the community and variations in biomass and, c) the turbidity caused by rainfall favored the emergence and establishment of other cyanobacteria, especially Planktothrix agardhii (Gomont) Anagnostidis & Komarek.
Resumo:
Abstract Background Some breeds of sheep are highly seasonal in terms of reproductive capability, and these changes are regulated by photoperiod and melatonin secretion. These changes affect the reproductive performance of rams, impairing semen quality and modifying hormonal profiles. Also, the antioxidant defence systems seem to be modulated by melatonin secretion, and shows seasonal variations. The aim of this study was to investigate the presence of melatonin and testosterone in ram seminal plasma and their variations between the breeding and non-breeding seasons. In addition, we analyzed the possible correlations between these hormones and the antioxidant enzyme defence system activity. Methods Seminal plasma from nine Rasa Aragonesa rams were collected for one year, and their levels of melatonin, testosterone, superoxide dismutase (SOD), glutathione reductase (GRD), glutathione peroxidase (GPX) and catalase (CAT) were measured. Results All samples presented measurable quantities of hormones and antioxidant enzymes. Both hormones showed monthly variations, with a decrease after the winter solstice and a rise after the summer solstice that reached the maximum levels in October-November, and a marked seasonal variation (P < 0.01) with higher levels in the breeding season. The yearly pattern of GRD and catalase was close to that of melatonin, and GRD showed a significant seasonal variation (P < 0.01) with a higher activity during the breeding season. Linear regression analysis between the studied hormones and antioxidant enzymes showed a significant correlation between melatonin and testosterone, GRD, SOD and catalase. Conclusions These results show the presence of melatonin and testosterone in ram seminal plasma, and that both hormones have seasonal variations, and support the idea that seasonal variations of fertility in the ram involve interplay between melatonin and the antioxidant defence system.
Resumo:
Background Acute respiratory infections (ARI) are frequent in children and complications can occur in patients with chronic diseases. We evaluated the frequency and impact of ARI and influenza-like illness (ILI) episodes on disease activity, and the immunogenicity and safety of influenza vaccine in a cohort of juvenile idiopathic arthritis (JIA) patients. Methods Surveillance of respiratory viruses was conducted in JIA patients during ARI season (March to August) in two consecutive years: 2007 (61 patients) and 2008 (63 patients). Patients with ARI or ILI had respiratory samples collected for virus detection by real time PCR. In 2008, 44 patients were immunized with influenza vaccine. JIA activity index (ACRPed30) was assessed during both surveillance periods. Influenza hemagglutination inhibition antibody titers were measured before and 30-40 days after vaccination. Results During the study period 105 ARI episodes were reported and 26.6% of them were ILI. Of 33 samples collected, 60% were positive for at least one virus. Influenza and rhinovirus were the most frequently detected, in 30% of the samples. Of the 50 JIA flares observed, 20% were temporally associated to ARI. Influenza seroprotection rates were higher than 70% (91-100%) for all strains, and seroconversion rates exceeded 40% (74-93%). In general, response to influenza vaccine was not influenced by therapy or disease activity, but patients using anti-TNF alpha drugs presented lower seroconversion to H1N1 strain. No significant differences were found in ACRPed30 after vaccination and no patient reported ILI for 6 months after vaccination. Conclusion ARI episodes are relatively frequent in JIA patients and may have a role triggering JIA flares. Trivalent split influenza vaccine seems to be immunogenic and safe in JIA patients.
Resumo:
Temporal and spatial variations of the larval fish community off the island of Gran Canaria (Canary Islands) were studied in weekly surveys from October 2005 to June 2006. A total of 156 taxa, belonging to 51 families and 15 orders, were identified. Myctophidae was by far the most abundant family (30%), followed by Sparidae (11%), Clupeidae (9%) and Gonostomatidae (7%). As expected for an oceanic island, neritic and oceanic taxa contributed in similar proportions. Leeward and windward retention areas were found for total egg and neritic larval abundance. However, seasonality showed a stronger influence on the annual larval assemblage than sampling site, as the latter was not significant on a long time scale. Results suggest that there are two seasonal larval assemblages corresponding to the two main characteristic periods of the water column in these waters: mixing (winter) and stratification (summer). In addition, a significant relationship was recorded between lunar illumination and small mesozooplankton biomass, suggesting that this relationship may be extended to certain neritic families. The most abundant neritic larvae (Sparidae) showed this lunar pattern, which partially supports a recent hypothesis about the effect of lunar illumination on larval fish survival and development in subtropical waters.
Resumo:
[EN] Here we present monthly, basin-wide maps of the partial pressure of carbon dioxide (pCO2) for the North Atlantic on a latitude by longitude grid for years 2004 through 2006 inclusive. The maps have been computed using a neural network technique which reconstructs the non-linear relationships between three biogeochemical parameters and marine pCO2. A self organizing map (SOM) neural network has been trained using 389 000 triplets of the SeaWiFSMODIS chlorophyll-a concentration, the NCEP/NCAR reanalysis sea surface temperature, and the FOAM mixed layer depth. The trained SOM was labelled with 137 000 underway pCO2 measurements collected in situ during 2004, 2005 and 2006 in the North Atlantic, spanning the range of 208 to 437atm. The root mean square error (RMSE) of the neural network fit to the data is 11.6?atm, which equals to just above 3 per cent of an average pCO2 value in the in situ dataset. The seasonal pCO2 cycle as well as estimates of the interannual variability in the major biogeochemical provinces are presented and discussed. High resolution combined with basin-wide coverage makes the maps a useful tool for several applications such as the monitoring of basin-wide air-sea CO2 fluxes or improvement of seasonal and interannual marine CO2 cycles in future model predictions. The method itself is a valuable alternative to traditional statistical modelling techniques used in geosciences.
Resumo:
Faxaflói bay is a short, wide and shallow bay situated in the southwest of Iceland. Although hosting a rather high level of marine traffic, this area is inhabited by many different species of cetaceans, among which the white-beaked dolphin (Lagenorhynchus albirostris), found here all year-round. This study aimed to evaluate the potential effect of increasing marine traffic on white-beaked dolphins distribution and behaviour, and to determine whether or not a variation in sighting frequencies have occurred throughout years (2008 – 2014). Data on sightings and on behaviour, as well as photographic one, has been collected daily taking advantage of the whale-watching company “Elding” operating in the bay. Results have confirmed the importance of this area for white-beaked dolphins, which have shown a certain level of site fidelity. Despite the high level of marine traffic, this dolphin appears to tolerate the presence of boats: no differences in encounter durations and locations over the study years have occurred, even though with increasing number of vessels, an increase in avoidance strategies has been displayed. Furthermore, seasonal differences in probabilities of sightings, with respect to the time of the day, have been found, leading to suggest the existence of a daily cycle of their movements and activities within the bay. This study has also described a major decline in sighting rates throughout years raising concern about white-beaked dolphin conservation status in Icelandic waters. It is therefore highly recommended a new dedicated survey to be conducted in order to document the current population estimate, to better investigate on the energetic costs that chronic exposure to disturbances may cause, and to plan a more suitable conservation strategy for white-beaked dolphin around Iceland.
Resumo:
BACKGROUND: Climate- or holiday-related seasonality in hospital admission rates is well known for many diseases. However, little research has addressed the impact of tourism on seasonality in admission rates. We therefore investigated the influence of tourism on emergency admission rates in Switzerland, where winter and summer leisure sport activities in large mountain regions can generate orthopedic injuries. METHODS: Using small area analysis, orthopedic hospital service areas (HSAo) were evaluated for seasonality in emergency admission rates. Winter sport areas were defined using guest bed accommodation rate patterns of guest houses and hotels located above 1000 meters altitude that show clear winter and summer peak seasons. Emergency admissions (years 2000-2002, n = 135'460) of local and nonlocal HSAo residents were evaluated. HSAo were grouped according to their area type (regular or winter sport area) and monthly analyses of admission rates were performed. RESULTS: Of HSAo within the defined winter sport areas 70.8% show a seasonal, summer-winter peak hospital admission rate pattern and only 1 HSAo outside the defined winter sport areas shows such a pattern. Seasonal hospital admission rates in HSAo in winter sport areas can be up to 4 times higher in winter than the intermediate seasons, and they are almost entirely due to admissions of nonlocal residents. These nonlocal residents are in general -and especially in winter- younger than local residents, and nonlocal residents have a shorter length of stay in winter sport than in regular areas. The overall geographic distribution of nonlocal residents admitted for emergencies shows highest rates during the winter as well as the summer in the winter sport areas. CONCLUSION: Small area analysis using orthopedic hospital service areas is a reliable method for the evaluation of seasonality in hospital admission rates. In Switzerland, HSAo defined as winter sport areas show a clear seasonal fluctuation in admission rates of only nonlocal residents, whereas HSAo defined as regular, non-winter sport areas do not show such seasonality. We conclude that leisure sport, and especially ski/snowboard tourism demands great flexibility in hospital beds, staff and resource planning in these areas.
Resumo:
Temporal dynamics create unique and often ephemeral conditions that can influence soil microbial biogeography at different spatial scales. This study investigated the relation between decimeter to meter spatial variability of soil microbial community structure, plant diversity, and soil properties at six dates from April through November. We also explored the robustness of these interactions over time. An historically unfertilized, unplowed grassland in southwest Germany was selected to characterize how seasonal variability in the composition of plant communities and substrate quality changed the biogeography of soil microorganisms at the plot scale (10 m x 10 m). Microbial community spatial structure was positively correlated with the local environment, i.e. physical and chemical soil properties, in spring and autumn, while the density and diversity of plants had an additional effect in the summer period. Spatial relationships among plant and microbial communities were detected only in the early summer and autumn periods when aboveground biomass increase was most rapid and its influence on soil microbial communities was greatest due to increased demand by plants for nutrients. Individual properties exhibited varying degrees of spatial structure over the season. Differential responses of Gram positive and Gram negative bacterial communities to seasonal shifts in soil nutrients were detected. We concluded that spatial distribution patterns of soil microorganisms change over a season and that chemical soil properties are more important controlling factors than plant density and diversity. Finer spatial resolution, such as the mm to cm scale, as well as taxonomic resolution of microbial groups, could help determine the importance of plant species density, composition, and growth stage in shaping microbial community composition and spatial patterns. (C) 2014 The Authors. Published by Elsevier Ltd. All rights reserved.
Resumo:
Plant functional traits reflect different evolutionary responses to environmental variation, and among extant species determine the outcomes of interactions between plants and their environment, including other plant species. Thus, combining phylogenetic and trait-based information can be a powerful approach for understanding community assembly processes across a range of spatial scales. We used this approach to investigate tree community composition at Phou Khao Khouay National Park (18°14’-18°32’N; 102°38’- 102°59’E), Laos, where several distinct forest types occur in close proximity. The aim of our study was to examine patterns of plant community assembly across the strong environmental gradients evident at our site. We hypothesized that differences in tree community composition were being driven by an underlying gradient in soil conditions. Thus, we predicted that environmental filtering would predominate at the site and that the filtering would be strongest on sandier soil with low pH, as these are the conditions least favorable to plant growth. We surveyed eleven 0.25 ha (50x50 m) plots for all trees above 10 cm dbh (1221 individual trees, including 47 families, 70 genera and 123 species) and sampled soils in each plot. For each species in the community, we measured 11 commonly studied plant functional traits covering both the leaf and wood economic spectrum traits and we reconstructed a phylogenetic tree for 115 of the species in the community using rbcL and matK sequences downloaded from Genebank (other species were not available). Finally we compared the distribution of trait values and species at two scales (among plots and 10x10m subplots) to examine trait and phylogenetic community structures. Although there was strong evidence that an underlying soil gradient was determining patterns of species composition at the site, our results did not support the hypothesis that the environmental filtering dominated community assembly processes. For the measured plant functional traits there was no consistent pattern of trait dispersion across the site, either when traits were considered individually or when combined in a multivariate analysis. However, there was a significant correlation between the degree of phylogenetic dispersion and the first principle component axis (PCA1) for the soil parameters.Moreover, the more phylogenetically clustered plots were on sandier soils with lower pH. Hence, we suggest that the community assembly processes across our sitemay reflect the influence ofmore conserved traits that we did not measure. Nevertheless, our results are equivocal and other interpretations are possible. Our study illustrates some difficulties in combining trait and phylogenetic approaches that may result from the complexities of integrating spatial and evolutionary processes that vary at different scales.
Resumo:
This study investigates thermally induced tensile stresses in ceramic tilings. Daily and seasonal thermal cycles, as well as, rare but extreme events, such as a hail-storm striking a heated terrace tiling, were studied in the field and by numerical modeling investigations. The field surveys delivered temperature– time diagrams and temperature profiles across tiling systems. These data were taken as input parameters for modeling the stress distribution in the tiling system in order to detect potential sites for material failure. Dependent on the thermal scenario (e.g., slow heating of the entire structure during morning and afternoon, or a rapid cooling of the tiles by a rain storm) the modeling indicates specific locations with high tensile stresses. Typically regions along the rim of the tiling field showed stresses, which can become critical with respect to the adhesion strength. Over the years, ongoing cycles of thermal expansion–contraction result in material fatigue promoting the propagation of cracks. However, the installation of flexible waterproofing membranes (applied between substrate and tile adhesive) represents an efficient technical innovation to reduce such crack propagation as confirmed by both numerical modeling results and microstructural studies on real systems.
Resumo:
Sex differences in seasonal timing include differences in hatch- or birth-date distribution and differences in the timing of migration or maturation such as protandrous arrival timing (PAT), which is early male arrival at breeding sites. I describe a novel form of protandrous arrival timing, as a sex difference in birth-date distribution in a live-bearing fish (Dwarf Perch, Micrometrus minimus). In this species, birth coincides with arrival at breeding sites because newborn males are sexually active. A series of samples of pregnant females and young of year was collected in Tomales Bay, CA. I analyzed the daily age record in otoliths to estimate the conception date of broods and the age that young-of-year individuals were born. Males were born at a younger age than females, as indicated by the daily age record and also by the predominance of females in broods from which some young had already been born, which was a common occurrence in pregnant females with older embryos. Sex ratio of broods varied with conception date such that early-season broods were predominantly male, possibly as a result of temperature-dependent sex determination. The combined effects of the sex difference in age at birth and seasonal shift in sex ratio were to shift the mean birth date of males relative to females by five days. The most likely ultimate explanation for PAT in the Dwarf Perch is that it arises from exploitation (scramble) competition for mating opportunities among recently-born young-of-year males.
Resumo:
The palaeoclimatic conditions during the Last Glacial Maximum (LGM) of southern South America and especially latitudinal shifts of the southern westerly wind belt are still discussed controversially. Longer palaeoclimatic records covering the Late Quaternary are rare. A particularly sensitive area to Late Quaternary climatic changes is the Norte Chico, northern Chile, because of its extreme climatic gradients. Small shifts of the present climatic zonation could cause significant variations of the terrestrial sedimentary environment which would be recorded in marine terrigenous sediments. To unveil the history of shifting climatic zones in northern Chile, we present a sedimentological study of a marine sediment core (GeoB 3375-1) from the continental slope off the Norte Chico (27.5°S). Sedimentological investigations include bulk- and silt grain-size determinations by sieving, Atterberg separation, and detailed SediGraph analyses. Additionally, clay mineralogical parameters were obtained by X-ray diffraction methods. The 14C-dated core, covering the time span from approximately 10,000 to 120,000 cal. yr B.P., consists of hemipelagic sediments. Terrigenous sedimentological parameters reveal a strong cyclicity, which is interpreted in terms of variations of sediment provenance, modifications of the terrestrial weathering regimes, and modes of sediment input to the ocean. These interpretations imply cyclic variations between comparatively arid climates and more humid conditions with seasonal precipitation for northern Chile (27.5°S) through the Late Quaternary. The cyclicity of the terrigenous sediment parameters is strongly dominated by precessional cycles. For the palaeoclimatic signal, this means that more humid conditions coincide with maxima of the precession index, as e.g. during the LGM. Higher seasonal precipitation for this part of Chile is most likely derived from frontal winter rain of the Southern Westerlies. Thus, the data presented here favour not only an equatorward shift of this atmospheric circulation system during the LGM, but also precession-controlled latitudinal movements throughout the Late Quaternary. Precessional forcing of latitudinal movements of the westerly atmospheric circulation system may be conceivable through teleconnections to the Northern Hemisphere monsoonal system in the Atlantic Ocean region.
Resumo:
Using an extensive network of occurrence records for 293 plant species collected over the past 40 years across a climatically diverse geographic section of western North America, we find that plant species distributions were just as likely to shift upwards (i.e., towards higher elevations) as downward (i.e., towards lower elevations) - despite consistent warming across the study area. Although there was no clear directional response to climate warming across the entire study area, there was significant region-to region- variation in responses (i.e. from as many as 73% to as few as32% of species shifting upward or downward). To understand the factors that might be controlling region-specific distributional shifts, we explored the relationship between the direction of change in distribution limits and the nature of recent climate change. We found that the direction of distribution limit shifts was explained by an interaction between the rate of change in local summer temperatures and seasonal precipitation. Specifically, species shifted upward at their upper elevational limit when snowfall declined at slower rates and minimum temperatures increased. By contrast, species shifted upwards at their lower elevation limit when maximum temperatures increased or both temperature and precipitation decreased. Our results suggest that future species' elevational distribution shifts will be complex, depending on the interaction between seasonal temperature and precipitation change.
Resumo:
Bacterial abundance, biomass and cell size were studied in the oligotrophic sediments of the Cretan Sea (Eastern Mediterranean), in order to investigate their response to the seasonal varying organic matter (OM) inputs. Sediment samples were collected on a seasonal basis along a transect of seven stations (ranging from 40 to 1570 m depth) using a multiple-corer. Bacterial parameters were related to changes in chloroplastic pigment equivalents (CPE), the biochemical composition (proteins, lipids, carbohydrates) of the sedimentary organic matter and the OM flux measured at a fixed station over the deep basin (1570 m depth). The sediments of the Cretan Sea represent a nutrient depleted ecosystem characterised by a poor quality organic matter. All sedimentary organic compounds were found to vary seasonally, and changes were more evident on the continental shelf than in deeper sediments. Bacterial abundance and biomass in the sediments of the Cretan Sea (ranging from 1.02 to 4.59 * 10**8 cells/g equivalent to 8.7 and 38.7 µgC/g) were quite high and their distribution appeared to be closely related to the input of fresh organic material. Bacterial abundance and biomass were sensitive to changes in nutrient availability, which also controls the average cell size and the frequency of dividing cells. Bacterial abundance increased up to 3-fold between August '94 and February '95 in response to the increased amount of sedimentary proteins and CPE, indicating that benthic bacteria were constrained more by changes in quality rather than the quantity of the sedimentary organic material. Bacterial responses to the food inputs were clearly detectable down to 10 cm depth. The distribution of labile organic compounds in the sediments appeared to influence the vertical patterns of bacterial abundance and biomass. Cell size decreased significantly with water depth. Bacterial abundance and biomass were characterised by clear seasonal changes in response to seasonal OM pulses. The strong coupling between protein flux and bacterial biomass together with the strong bacterial dominance over the total biomass suggest that the major part of the carbon flow was channelled through the bacteria and the benthic microbial loop.