998 resultados para Sea Buckthorn Berries
Resumo:
The stage-specific distribution of Alaska plaice (Pleuronectes quadrituberculatus) eggs in the southeastern Bering Sea was examined with collections made in mid-May in 2002, 2003, 2005, and 2006. Eggs in the early stages of development were found primarily offshore of the 40-m isobath. Eggs in the middle and late stages of development were found inshore and offshore of the 40-m isobath. There was some evidence that early-stage eggs occur deeper in the water column than late-stage eggs, although year-to-year variability in that trend was observed. Most eggs were in the later stages of development; therefore the majority of spawning is estimated to have occurred a few weeks before collection—probably April—and may be highly synchronized among local spawning areas. Results indicate that sampling with continuous underway fish egg collectors(CUFES) should be supplemented with sampling of the entire water column to ensure adequate samples of all egg stages of Alaska plaice. Data presented offer new information on the stage-dependent horizontal and vertical distribution of Alaska plaice eggs in the Bering Sea and provide further evidence that the early life history stages of this species are vulnerable to near-surface variations in hydrographical conditions and climate forcing.
Resumo:
Body-size measurement errors are usually ignored in stock assessments, but may be important when body-size data (e.g., from visual sur veys) are imprecise. We used experiments and models to quantify measurement errors and their effects on assessment models for sea scallops (Placopecten magellanicus). Errors in size data obscured modes from strong year classes and increased frequency and size of the largest and smallest sizes, potentially biasing growth, mortality, and biomass estimates. Modeling techniques for errors in age data proved useful for errors in size data. In terms of a goodness of model fit to the assessment data, it was more important to accommodate variance than bias. Models that accommodated size errors fitted size data substantially better. We recommend experimental quantification of errors along with a modeling approach that accommodates measurement errors because a direct algebraic approach was not robust and because error parameters were diff icult to estimate in our assessment model. The importance of measurement errors depends on many factors and should be evaluated on a case by case basis.
Resumo:
A portion of the Oculina Bank located off eastern Florida is a marine protected area (MPA) preserved for its dense populations of the ivory tree coral (Oculina varicosa), which provides important habitat for fish. Surveys of fish assemblages and benthic habitat were conducted inside and outside the MPA in 2003 and 2005 by using remotely operated vehicle video transects and digital still imagery. Fish species composition, biodiversity, and grouper densities were used to determine whether O. varicosa forms an essential habitat compared to other structure-forming habitats and to examine the effectiveness of the MPA. Multivariate analyses indicated no differences in fish assemblages or biodiversity among hardbottom habitat types and grouper densities were highest among the most complex habitats; however the higher densities were not exclusive to coral habitat. Therefore, we conclude that O. varicosa was functionally equivalent to other hardbottom habitats. Even though fish assemblages were not different among management areas, biodiversity and grouper densities were higher inside the MPA compared to outside. The percentage of intact coral was also higher inside the MPA. These results provide initial evidence demonstrating effectiveness of the MPA for restoring reef fish and their habitat. This is the first study to compare reef fish populations on O. varicosa with other structure-forming reef habitats and also the first to examine the effectiveness of the MPA for restoring fish populations and live reef cover.
Resumo:
Depth data from archival tags on northern rock sole (Lepidopsetta polyxystra) were examined to assess whether fish used tidal currents to aid horizontal migration. Two northern rock sole, out of 115 released with archival tags in the eastern Bering Sea, were recovered 314 and 667 days after release. Both fish made periodic excursions away from the bottom during mostly night-time hours, but also during particular phases of the tide cycle. One fish that was captured and released in an area of rotary currents made vertical excursions that were correlated with tidal current direction. To test the hypothesis that the fish made vertical excursions to use tidal currents to aid migration, a hypothetical migratory path was calculated using a tide model to predict the current direction and speed during periods when the fish was off the bottom. This migration included limited movements from July through December, followed by a 200-km southern migration from January through February, then a return northward in March and April. The successful application of tidal current information to predict a horizontal migratory path not only provides evidence of selective tidal stream transport but indicates that vertical excursions were conducted primarily to assist horizontal migration.
Resumo:
The on-offshore distributions of tuna larvae in near-reef waters of the Coral Sea, near Lizard Island (14°30ʹS, 145°27ʹE), Australia, were investigated during four cruises from November 1984 to February 1985 to test the hypothesis that larvae of these oceanic fishes are found in highest abundance near coral reefs. Oblique bongo net tows were made in five on-offshore blocks in the Coral Sea, ranging from 0–18.5 km offshore of the outer reefs of the Great Barrier Reef, as well as inside the Great Barrier Reef Lagoon. The smallest individuals (<3.2 mm SL) of the genus Thunnus could not be identified to species, and are referred to as Thunnus spp. We found species-specific distributional patterns. Thunnus spp. and T. alalunga (albacore) larvae were most abundant (up to 68 larvae/100 m2) in near-reef (0–5.5 km offshore) waters, whereas Katsuwonus pelamis (skipjack tuna) larvae increased in abundance in the offshore direction (up to 228 larvae/100 m2, 11.1–18.5 km offshore). Larvae of T. albacares (yellowfin tuna) and Euthynnus affinis (kawakawa) were relatively rare throughout the study region, and the patterns of their distributions were inconclusive. Few larvae of any tuna species were found in the lagoon. Size-frequency distributions revealed a greater proportion of small larvae inshore compared to offshore for K. pelamis and T. albacares. The absence of significant differences in size-frequency distributions for other species and during the other cruises was most likely due to the low numbers of larvae. Larval distributions probably resulted from a combination of patterns of spawning and vertical distribution, combined with wind-driven onshore advection and downwelling on the seaward side of the outer reefs.
Resumo:
A nursery site for the Alaska skate (Bathyraja parmifera) was sampled seasonally from June 2004 to July 2005. At the small nursery site (~2 km2), located in a highly productive area near the shelf-slope interface at the head of Bering Canyon in the eastern Bering Sea, reproductive males and females dominated the catch and neonate and juvenile skates were rare. Seasonal samples showed summertime (June and July) as the peak reproductive time in the nursery although some reproduction occurred throughout the year. Timeseries analysis of embryo length frequencies revealed that three cohorts were developing simultaneously and the period of embryonic development was estimated at 3.5 years and average embryo growth rate at 0.2 mm/day. Estimated egg case deposition occurred mainly during summertime and hatching occurred during winter months. Protracted hatching times may be common for oviparous elasmobranch species and may be directly correlated with ambient temperatures as evident from a meta-data analysis. Evidence indicates that the Alaska skate uses the eastern Bering Sea outer continental shelf region for reproduction and the middle and inner shelf regions as habitat for immature and subadults. Skate nurseries may be vulnerable to disturbances because they are located in highly productive areas and because embryos develop slowly.
Resumo:
Groundfish fisheries in the southeast Bering Sea in Alaska have been constrained in recent years by management measures to protect the endangered Steller sea lion (Eumetopias jubatus). There is concern that the present commercial harvest may produce a localized depletion of groundfish that would affect the foraging success of Steller sea lions or other predators. A three-year field experiment was conducted to determine whether an intensive trawl fishery in the southeast Bering Sea created a localized depletion in the abundance of Pacific cod (Gadus macrocephalus). This experiment produced strongly negative results; no difference was found in the rate of seasonal change in Pacific cod abundance between stations within a regulatory no-trawl zone and stations in an immediately adjacent trawled area. Corollary studies showed that Pacific cod in the study area were highly mobile and indicated that the geographic scale of Pacific cod movement was larger than the spatial scale used as the basis for current no-trawl zones. The idea of localized depletion is strongly dependent on assumed spatial and temporal scales and contains an implicit assumption that there is a closed local population. The scale of movement of target organisms is critical in determining regional effects of fishery removals.
Resumo:
Identifying the spatial and temporal patterns of larval fish supply and settlement is a key step in understanding the connectivity of meta-populations (Sale et al., 2005). Because of the potentially dispersive nature of the pelagic larval phase of most reef fishes, tracking cohorts from hatching to settlement is extremely difficult (but see Jones et al., 1999). However, for many studies it is sufficient to sample larvae immediately before settlement. Many coral reef fish species use mangrove and seagrass beds as nursery habitats (Nagelkerken et al., 2001; Mumby et al., 2004) and larvae of these species must pass over the reef crest in order to arrive at their preferred settlement habitats. The ability to sample this new cohort of larval fishes provides opportunities for researchers to explore the intricacies of the transition from larva to juvenile (Searcy and Sponaugle, 2001). Quantifying the potential settlers also provides valuable information about the spatial and temporal supply of presettlement larvae (Victor, 1986). Therefore a number of larval sampling methods were developed, one of which is the use of crest nets (Dufour and Galzin, 1993).
Resumo:
This study investigates the temporal stability of length- and age-at-maturity estimates for female Pacific cod (Gadus macrocephalus) in the Gulf of Alaska and eastern Bering Sea. Females reached 50% maturity (A50) at 4.4 years in the Gulf of Alaska and at 4.9 years in the eastern Bering Sea. Total body length at 50% maturity (LT50) was significantly smaller (503 mm) in the Gulf of Alaska than in the eastern Bering Sea (580 mm). The estimated length- and age-at-maturity did not differ significantly between winter and spring in either the Gulf of Alaska (1999) or Bering Sea (2003) areas. The results of this study raised the spawning biomass estimate of female Alaskan Pacific cod from 298×103 t for 2005 to 499×103 t for 2006. The increased spawning biomass estimate resulted in an increased over-fishing limit for Pacific cod.
Resumo:
The diet of Steller sea lions (Eumetopias jubatus) was determined from 1494 scats (feces) collected at breeding (rookeries) and nonbreeding (haulout) sites in Southeast Alaska from 1993 to 1999. The most common prey of 61 species identified were walleye pollock (Theragra chalcogramma), Pacific herring (Clupea pallasii), Pacific sand lance (Ammodytes hexapterus), Pacific salmon (Salmonidae), arrowtooth flounder (Atheresthes stomias), rockfish (Sebastes spp.), skates (Rajidae), and cephalopods (squid and octopus). Steller sea lion diets at the three Southeast Alaska rookeries differed significantly from one another. The sea lions consumed the most diverse range of prey categories during summer, and the least diverse during fall. Diet was more diverse in Southeast Alaska during the 1990s than in any other region of Alaska (Gulf of Alaska and Aleutian Islands). Dietary differences between increasing and declining populations of Steller sea lions in Alaska correlate with rates of population change, and add credence to the view that diet may have played a role in the decline of sea lions in the Gulf of Alaska and Aleutian Islands.
Resumo:
The eastern Steller sea lion (Eumetopias jubatus) population comprises animals that breed along the west coast of North America between California and southeastern Alaska. There are currently 13 major rookeries (>50 pups): five in southeastern Alaska, three in British Columbia, two in Oregon, and three in California. Overall abundance has increased at an average annual rate of 3.1% since the 1970s. These increases can largely be attributed to population recovery from predator-control kills and commercial harvests, and abundance is now probably as high as it has been in the last century. The number of rookeries has remained fairly constant (n=11 to 13) over the past 80 years, but there has been a northward shift in distribution of both rookeries and numbers of animals. Based on the number of pups counted in a population-wide survey in 2002, total pup production was estimated to be about 11,000 (82% in southeastern Alaska and British Columbia), representing a total population size as approximately 46,000−58,000 animal
Resumo:
Cannibalism is thought to be an inf luential top-down process affecting walleye pollock (Theragra chalcogramma) recruitment in the eastern Bering Sea (EBS). In summer, many age-1 pollock occupy the same depths as those of adult walleye pollock, making them vulnerable to cannibalism. We examine factors that inf luence the occurrence and amount of cannibalism, as well as the abundance and co-occurrence of predator and prey walleye pollock. Large walleye pollock were generally found in deeper waters and avoided cold temperatures; whereas, age-1 walleye pollock were found in broader bottom depth and temperature ranges. The occurrence of cannibalism was highest in the area where predator and prey walleye pollock co-occurred and the amount of cannibalism was highest on the middle and outer EBS shelf. Both the occurrence and amount of cannibalism were influenced by location, bottom temperature and bottom depth, and the abundance of prey walleye pollock. The abundance of both large and small walleye pollock decreased during the 1982–2006 survey period in the EBS and, hence, the occurrence and amount of cannibalism also decreased. The occurrence and amount of cannibalism observed in the diet samples from the summer survey were good indicators of year class strength, as estimated by the stock assessment model. There was more cannibalism of age-1 walleye pollock when predicted recruit abundance was highest, indicating that summer cannibalism on age-1 walleye pollock, a top-down process, does not control walleye pollock recruitment in the EBS.
Resumo:
Estimating rare events from zero-heavy data (data with many zero values) is a common challenge in fisheries science and ecology. For example, loggerhead sea turtles (Caretta caretta) and leatherback sea turtles (Dermochelys coriacea) account for less than 1% of total catch in the U.S. Atlantic pelagic longline fishery. Nevertheless, the Southeast Fisheries Science Center (SEFSC) of the National Marine Fisheries Service (NMFS) is charged with assessing the effect of this fishery on these federally protected species. Annual estimates of loggerhead and leatherback bycatch in a fishery can affect fishery management and species conservation decisions. However, current estimates have wide confidence intervals, and their accuracy is unknown. We evaluate 3 estimation methods, each at 2 spatiotemporal scales, in simulations of 5 spatial scenarios representing incidental capture of sea turtles by the U.S. Atlantic pelagic longline fishery. The delta-log normal method of estimating bycatch for calendar quarter and fishing area strata was the least biased estimation method in the spatial scenarios believed to be most realistic. This result supports the current estimation procedure used by the SEFSC.
Resumo:
There is increasing interest in the potential impacts that fishing activities have on megafaunal benthic invertebrates occurring in continental shelf and slope ecosystems. We examined how the structure, size, and high-density aggregations of invertebrates provided structural relief for fishes in continental shelf and slope ecosystems off southern California. We made 112 dives in a submersible at 32−320 m water depth, surveying a variety of habitats from high-relief rock to flat sand and mud. Using quantitative video transect methods, we made 12,360 observations of 15 structure-form-ing invertebrate taxa and 521,898 individuals. We estimated size and incidence of epizoic animals on 9105 sponges, black corals, and gorgonians. Size variation among structure-form-ing invertebrates was significant and 90% of the individuals were <0.5 m high. Less than 1% of the observations of organisms actually sheltering in or located on invertebrates involved fishes. From the analysis of spatial associations between fishes and large invertebrates, six of 108 fish species were found more often adjacent to invertebrate colonies than the number of fish predicted by the fish-density data from transects. This finding indicates that there may be spatial associations that do not necessarily include physical contact with the sponges and corals. However, the median distances between these six fish species and the invertebrates were not particularly small (1.0−5.5 m). Thus, it is likely that these fishes and invertebrates are present together in the same habitats but that there is not necessarily a functional relationship between these groups of organisms. Regardless of their associations with fishes, these invertebrates provide structure and diversity for continental shelf ecosystems off southern California and certainly deserve the attention of scientists undertaking future conservation efforts.
Resumo:
Data collected from an annual groundf ish survey of the eastern Bering Sea shelf from 1975 to 2002 were used to estimate biomass and biodiversity indexes for two fish guilds: f latfish and roundfish. Biomass estimates indicated that several species of f latfish (particularly rock sole, arrowtooth flounder, and f lathead sole), several large sculpins (Myoxocephalus spp.), bigmouth (Hemitripterus bolini), and skates (Bathyraja spp.) had increased. Declining species included several f latfish species and many smaller roundfish species of sculpins, eelpouts (Lycodes spp.), and sablefish (Anoplopoma fimbria). Biodiversity indexes were calculated by using biomass estimates for both guilds from 1975 through 2002 within three physical domains on the eastern Bering Sea shelf. Biodiversity trends were found to be generally declining within the roundfish guild and generally increasing within the f latfish guild and varied between inner, middle, and outer shelf domains. The trends in biodiversity indexes from this study correlated strongly with the regime shift reported for the late 1970s and 1980s.