956 resultados para Scheduling optimization
Resumo:
The introduction of electricity markets and integration of Distributed Generation (DG) have been influencing the power system’s structure change. Recently, the smart grid concept has been introduced, to guarantee a more efficient operation of the power system using the advantages of this new paradigm. Basically, a smart grid is a structure that integrates different players, considering constant communication between them to improve power system operation and management. One of the players revealing a big importance in this context is the Virtual Power Player (VPP). In the transportation sector the Electric Vehicle (EV) is arising as an alternative to conventional vehicles propel by fossil fuels. The power system can benefit from this massive introduction of EVs, taking advantage on EVs’ ability to connect to the electric network to charge, and on the future expectation of EVs ability to discharge to the network using the Vehicle-to-Grid (V2G) capacity. This thesis proposes alternative strategies to control these two EV modes with the objective of enhancing the management of the power system. Moreover, power system must ensure the trips of EVs that will be connected to the electric network. The EV user specifies a certain amount of energy that will be necessary to charge, in order to ensure the distance to travel. The introduction of EVs in the power system turns the Energy Resource Management (ERM) under a smart grid environment, into a complex problem that can take several minutes or hours to reach the optimal solution. Adequate optimization techniques are required to accommodate this kind of complexity while solving the ERM problem in a reasonable execution time. This thesis presents a tool that solves the ERM considering the intensive use of EVs in the smart grid context. The objective is to obtain the minimum cost of ERM considering: the operation cost of DG, the cost of the energy acquired to external suppliers, the EV users payments and remuneration and penalty costs. This tool is directed to VPPs that manage specific network areas, where a high penetration level of EVs is expected to be connected in these areas. The ERM is solved using two methodologies: the adaptation of a deterministic technique proposed in a previous work, and the adaptation of the Simulated Annealing (SA) technique. With the purpose of improving the SA performance for this case, three heuristics are additionally proposed, taking advantage on the particularities and specificities of an ERM with these characteristics. A set of case studies are presented in this thesis, considering a 32 bus distribution network and up to 3000 EVs. The first case study solves the scheduling without considering EVs, to be used as a reference case for comparisons with the proposed approaches. The second case study evaluates the complexity of the ERM with the integration of EVs. The third case study evaluates the performance of scheduling with different control modes for EVs. These control modes, combined with the proposed SA approach and with the developed heuristics, aim at improving the quality of the ERM, while reducing drastically its execution time. The proposed control modes are: uncoordinated charging, smart charging and V2G capability. The fourth and final case study presents the ERM approach applied to consecutive days.
Resumo:
A optimização e a aprendizagem em Sistemas Multi-Agente são consideradas duas áreas promissoras mas relativamente pouco exploradas. A optimização nestes ambientes deve ser capaz de lidar com o dinamismo. Os agentes podem alterar o seu comportamento baseando-se em aprendizagem recente ou em objectivos de optimização. As estratégias de aprendizagem podem melhorar o desempenho do sistema, dotando os agentes da capacidade de aprender, por exemplo, qual a técnica de optimização é mais adequada para a resolução de uma classe particular de problemas, ou qual a parametrização é mais adequada em determinado cenário. Nesta dissertação são estudadas algumas técnicas de resolução de problemas de Optimização Combinatória, sobretudo as Meta-heurísticas, e é efectuada uma revisão do estado da arte de Aprendizagem em Sistemas Multi-Agente. É também proposto um módulo de aprendizagem para a resolução de novos problemas de escalonamento, com base em experiência anterior. O módulo de Auto-Optimização desenvolvido, inspirado na Computação Autónoma, permite ao sistema a selecção automática da Meta-heurística a usar no processo de optimização, assim como a respectiva parametrização. Para tal, recorreu-se à utilização de Raciocínio baseado em Casos de modo que o sistema resultante seja capaz de aprender com a experiência adquirida na resolução de problemas similares. Dos resultados obtidos é possível concluir da vantagem da sua utilização e respectiva capacidade de adaptação a novos e eventuais cenários.
Resumo:
Este trabalho baseia-se num caso de estudo real de planeamento de operações de armazenagem num silo rural de cereais, e enquadra-se nos problemas de planeamento e programação de armazéns. Os programadores deparam-se diariamente com o problema de arranjar a melhor solução de transferência entre células de armazenagem, tentando maximizar o número de células vazias, por forma a ter maior capacidade para receber novos lotes, respeitando as restrições de receção e expedição, e as restrições de capacidade das linhas de transporte. Foi desenvolvido um modelo matemático de programação linear inteira mista e uma aplicação em Excel, com recurso ao VBA, para a sua implementação. Esta implementação abrangeu todo o processo relativo à atividade em causa, isto é, vai desde a recolha de dados, seu tratamento e análise, até à solução final de distribuição dos vários produtos pelas várias células. Os resultados obtidos mostram que o modelo otimiza o número de células vazias, tendo em conta os produtos que estão armazenados mais os que estão para ser rececionados e expedidos, em tempo computacional inferior a 60 segundos, constituindo, assim, uma importante mais valia para a empresa em causa.
Resumo:
Over the last two decades the research and development of legged locomotion robots has grown steadily. Legged systems present major advantages when compared with ‘traditional’ vehicles, because they allow locomotion in inaccessible terrain to vehicles with wheels and tracks. However, the robustness of legged robots, and especially their energy consumption, among other aspects, still lag behind mechanisms that use wheels and tracks. Therefore, in the present state of development, there are several aspects that need to be improved and optimized. Keeping these ideas in mind, this paper presents the review of the literature of different methods adopted for the optimization of the structure and locomotion gaits of walking robots. Among the distinct possible strategies often used for these tasks are referred approaches such as the mimicking of biological animals, the use of evolutionary schemes to find the optimal parameters and structures, the adoption of sound mechanical design rules, and the optimization of power-based indexes.
Resumo:
Conferência: 39th Annual Conference of the IEEE Industrial-Electronics-Society (IECON) - NOV 10-14, 2013
Resumo:
A Box–Behnken factorial design coupled with surface response methodology was used to evaluate the effects of temperature, pH and initial concentration in the Cu(II) sorption process onto the marine macroalgae Ascophyllum nodosum. The effect of the operating variables on metal uptake capacitywas studied in a batch system and a mathematical model showing the influence of each variable and their interactions was obtained. Study ranges were 10–40ºC for temperature, 3.0–5.0 for pH and 50–150mgL−1 for initial Cu(II) concentration. Within these ranges, the biosorption capacity is slightly dependent on temperature but markedly increases with pH and initial concentration of Cu(II). The uptake capacities predicted by the model are in good agreement with the experimental values. Maximum biosorption capacity of Cu(II) by A. nodosum is 70mgg−1 and corresponds to the following values of those variables: temperature = 40ºC, pH= 5.0 and initial Cu(II) concentration = 150mgL−1.
Resumo:
Solvent extraction is considered as a multi-criteria optimization problem, since several chemical species with similar extraction kinetic properties are frequently present in the aqueous phase and the selective extraction is not practicable. This optimization, applied to mixer–settler units, considers the best parameters and operating conditions, as well as the best structure or process flow-sheet. Global process optimization is performed for a specific flow-sheet and a comparison of Pareto curves for different flow-sheets is made. The positive weight sum approach linked to the sequential quadratic programming method is used to obtain the Pareto set. In all investigated structures, recovery increases with hold-up, residence time and agitation speed, while the purity has an opposite behaviour. For the same treatment capacity, counter-current arrangements are shown to promote recovery without significant impairment in purity. Recycling the aqueous phase is shown to be irrelevant, but organic recycling with as many stages as economically feasible clearly improves the design criteria and reduces the most efficient organic flow-rate.
Resumo:
Objective: A new protocol for fixation and slide preservation was evaluated in order to improve the quality of immunocytochemical reactions on cytology slides. Methods: The quality of immunoreactions was evaluated retrospectively on 186 cytology slides (130 direct smears, 56 cytospins) prepared from different cytology samples. Ninety-three of the slides were air dried, stored at -20 °C and fixed in acetone for 10 minutes (Protocol 1), whereas the other 93 were immediately fixed in methanol at -20 °C for at least 30 minutes, subsequently protected with polyethylene glycol (PEG) and stored at room temperature (Protocol 2). Immunocytochemical staining, with eight primary antibodies, was performed on a Ventana BenchMark Ultra instrument using an UltraView Universal DAB Detection Kit. The following parameters were evaluated for each immunoreaction: morphology preservation, intensity of specific staining, background and counterstain. The slides were blinded and independently scored by four observers with marks from 0 to 20. Results: The quality of immunoreactions was better on methanol-fixed slides protected with PEG than on air-dried slides stored in the freezer: X¯ = 14.44 ± 3.58 versus X¯ = 11.02 ± 3.86, respectively (P < 0.001). Conclusion: Immediate fixation of cytology slides in cold methanol with subsequent application of PEG is an easy and straightforward procedure that improves the quality of immunocytochemical reactions and allows the storage of the slides at room temperature.
Resumo:
Screening of topologies developed by hierarchical heuristic procedures can be carried out by comparing their optimal performance. In this work we will be exploiting mono-objective process optimization using two algorithms, simulated annealing and tabu search, and four different objective functions: two of the net present value type, one of them including environmental costs and two of the global potential impact type. The hydrodealkylation of toluene to produce benzene was used as case study, considering five topologies with different complexities mainly obtained by including or not liquid recycling and heat integration. The performance of the algorithms together with the objective functions was observed, analyzed and discussed from various perspectives: average deviation of results for each algorithm, capacity for producing high purity product, screening of topologies, objective functions robustness in screening of topologies, trade-offs between economic and environmental type objective functions and variability of optimum solutions.
Resumo:
Multi-objective particle swarm optimization (MOPSO) is a search algorithm based on social behavior. Most of the existing multi-objective particle swarm optimization schemes are based on Pareto optimality and aim to obtain a representative non-dominated Pareto front for a given problem. Several approaches have been proposed to study the convergence and performance of the algorithm, particularly by accessing the final results. In the present paper, a different approach is proposed, by using Shannon entropy to analyzethe MOPSO dynamics along the algorithm execution. The results indicate that Shannon entropy can be used as an indicator of diversity and convergence for MOPSO problems.
Resumo:
An optimised version of the Quick, Easy, Cheap, Effective, Rugged and Safe (QuEChERS) method for simultaneous determination of 14 organochlorine pesticides in carrots was developed using gas chromatography coupled with electron-capture detector (GC-ECD) and confirmation by gas chromatography tandem mass spectrometry (GC-MS/MS). A citrate-buffered version of QuEChERS was applied for the extraction of the organochlorine pesticides, and for the extract clean-up, primary secondary amine, octadecyl-bonded silica (C18), magnesium sulphate (MgSO4) and graphitized carbon black were used as sorbents. The GC-ECD determination of the target compounds was achieved in less than 20 min. The limits of detection were below the EUmaximum residue limits (MRLs) for carrots, 10–50 μg kg−1, while the limit of quantification did exceed 10 μg kg−1 for hexachlorobenzene (HCB). The introduction of a sonication step was shown to improve the recoveries. The overall average recoveries in carrots, at the four tested levels (60, 80, 100 and 140 μg kg−1), ranged from 66 to 111% with relative standard deviations in the range of 2– 15 % (n03) for all analytes, with the exception of HCB. The method has been applied to the analysis of 21 carrot samples from different Portuguese regions, and β-HCH was the pesticide most frequently found, with concentrations oscillating between less than the limit of quantification to 14.6 μg kg−1. Only one sample had a pesticide residue (β-HCH) above the MRL, 14.6 μg kg−1. This methodology combines the advantages of both QuEChERS and GC-ECD, producing a very rapid, sensitive and reliable procedure which can be applied in routine analytical laboratories.
Resumo:
The present work describes the optimization of a short-term assay, based on the inhibition of the esterase activity of the alga Pseudokirchneriella subcapitata, in a microplate format. The optimization of the staining procedure showed that the incubation of the algal cells with 20 μmolL−1 fluorescein diacetate (FDA) for 40 min allowed discrimination between metabolic active and inactive cells. The shortterm assay was tested using Cu as toxicant. For this purpose, algal cells, in the exponential or stationary phase of growth, were exposed to the heavy metal in growing conditions. After 3 or 6 h, cells were subsequently stained with FDA, using the optimized procedure. For Cu, the 3- and 6-h EC50 values, based on the inhibition of the esterase activity of algal cells in the exponential phase of growth, were 209 and 130 μg L−1, respectively. P. subcapitata cells, in the stationary phase of growth, displayed higher effective concentration values than those observed in the exponential phase. The 3- and 6-h EC50 values for Cu, for cells in the stationary phase, were 443 and 268 μgL−1, respectively. This short-term microplate assay showed to be a rapid endpoint for testing toxicity using the alga P. subcapitata. The small volume required, the simplicity of the assay (no washing steps), and the automatic reading of the fluorescence make the assay particularly well suited for the evaluation of the toxicity of a high number of environmental samples.
Resumo:
In the proposed model, the independent system operator (ISO) provides the opportunity for maintenance outage rescheduling of generating units before each short-term (ST) time interval. Long-term (LT) scheduling for 1 or 2 years in advance is essential for the ISO and the generation companies (GENCOs) to decide their LT strategies; however, it is not possible to be exactly followed and requires slight adjustments. The Cournot-Nash equilibrium is used to characterize the decision-making procedure of an individual GENCO for ST intervals considering the effective coordination with LT plans. Random inputs, such as parameters of the demand function of loads, hourly demand during the following ST time interval and the expected generation pattern of the rivals, are included as scenarios in the stochastic mixed integer program defined to model the payoff-maximizing objective of a GENCO. Scenario reduction algorithms are used to deal with the computational burden. Two reliability test systems were chosen to illustrate the effectiveness of the proposed model for the ST decision-making process for future planned outages from the point of view of a GENCO.
Resumo:
Competitive electricity markets have arisen as a result of power-sector restructuration and power-system deregulation. The players participating in competitive electricity markets must define strategies and make decisions using all the available information and business opportunities.