973 resultados para Saranac Lake Region (N.Y.)--Remote-sensing maps.
Resumo:
Large areas of tropical sub- and inter-tidal seagrass beds occur in highly turbid environments and cannot be mapped through the water column. The purpose of this project was to determine if and how airborne and satellite imaging systems could be used to map inter-tidal seagrass properties along the wet-tropics coast in north Queensland, Australia. The work aimed to: (1) identify the minimum level of seagrass foliage cover that could be detected from airborne and satellite imagery; and (2) define the minimum detectable differences in seagrass foliage cover in exposed intertidal seagrass beds. High resolution spectral-reflectance data (2040 bands, 350 – 2500nm) were collected over 40cm diameter plots from 240 sites on Magnetic Island, Pallarenda Beach and Green Island in North Queensland at spring low tides in April 2006. The seagrass species sampled were: Thalassia hemprechii, Halophila ovalis, Halodule uninerivs; Syringodium isoetifolium, Cymodocea serrulata, and Cymodoea rotundata. Digital photos were captured for each plot and used to derive estimates of seagrass species cover, epiphytic growth, micro- and macro-algal cover, and substrate colour. Sediment samples were also collected and analysed to measure the concentration of Chlorophyll-a associated with benthic micro-algae. The field reflectance spectra were analysed in combination with their corresponding seagrass species foliage cover levels to establish the minimum foliage projective cover required for each seagrass to be significantly different from bare substrate and substrate with algal cover. This analysis was repeated with reflectance spectra resampled to the bandpass functions of Quickbird, Ikonos, SPOT 5 and Landsat 7 ETM. Preliminary results indicate that conservative minimum detectable seagrass cover levels across most the species sampled were between 30%- 35% on dark substrates. Further analysis of these results will be conducted to determine their separability and satellite images and to assess the effects epiphytes and algal cover.
Resumo:
Proceedings of the 11th Australasian Remote Sensing and Photogrammetry Conference
Resumo:
The technique of remote sensing provides a unique view of the earth's surface and considerable areas can be surveyed in a short amount of time. The aim of this project was to evaluate whether remote sensing, particularly using the Airborne Thematic Mapper (ATM) with its wide spectral range, was capable of monitoring landfill sites within an urban environment with the aid of image processing and Geographical Information Systems (GIS) methods. The regions under study were in the West Midlands conurbation and consisted of a large area in what is locally known as the Black Country containing heavy industry intermingled with residential areas, and a large single active landfill in north Birmingham. When waste is collected in large volumes it decays and gives off pollutants. These pollutants, landfill gas and leachate (a liquid effluent), are known to be injurious to vegetation and can cause stress and death. Vegetation under stress can exhibit a physiological change, detectable by the remote sensing systems used. The chemical and biological reactions that create the pollutants are exothermic and the gas and leachate, if they leave the waste, can be warmer than their surroundings. Thermal imagery from the ATM (daylight and dawn) and thermal video were obtained and used to find thermal anomalies on the area under study. The results showed that vegetation stress is not a reliable indicator of landfill gas migration, as sites within an urban environment have a cover too complex for the effects to be identified. Gas emissions from two sites were successfully detected by all the thermal imagery with the thermal ATM being the best. Although the results were somewhat disappointing, recent technical advancements in the remote sensing systems used in this project would allow geo-registration of ATM imagery taken on different occasions and the elimination of the effects of solar insolation.
Resumo:
The project set out with two main aims. The first aim was to determine whether large scale multispectral aerial photography could be used to successfully survey and monitor urban wildlife habitats. The second objective was to investigate whether this data source could be used to predict population numbers of selected species expected to be found in a particular habitat type. Panchromatic, colour and colour infra-red, 1:2500 scale aerial photographs, taken in 1981 and 1984, were used. For the orderly extraction of information from the imagery, an urban wildlife habitat classification was devised. This was based on classifications already in use in urban environments by the Nature Conservancy Council. Pilot tests identified that the colour infra-red imagery provided the most accurate results about urban wildlife habitats in the study area of the Blackbrook Valley, Dudley. Both the 1981 and 1984 colour infra-red photographs were analysed and information was obtained about the type, extent and distribution of habitats. In order to investigate whether large scale aerial photographs could be used to predict likely animal population numbers in urban environments, it was decided to limit the investigation to the possible prediction of bird population numbers in Saltwells Local Nature Reserve. A good deal of research has already been completed into the development of models to predict breeding bird population numbers in woodland habitats. These models were analysed to determine whether they could be used successfully with data extracted from the aerial photographs. The projects concluded that 1:2500 scale colour infra-red photographs can provide very useful and very detailed information about the wildlife habitats in an urban area. Such imagery can also provide habitat area data to be used with population predictive models of woodland breeding birds. Using the aerial photographs, further investigations into the relationship between area of habitat and the breeding of individual bird species were inconclusive and need further research.
Resumo:
Tonal, textural and contextual properties are used in manual photointerpretation of remotely sensed data. This study has used these three attributes to produce a lithological map of semi arid northwest Argentina by semi automatic computer classification procedures of remotely sensed data. Three different types of satellite data were investigated, these were LANDSAT MSS, TM and SIR-A imagery. Supervised classification procedures using tonal features only produced poor classification results. LANDSAT MSS produced classification accuracies in the range of 40 to 60%, while accuracies of 50 to 70% were achieved using LANDSAT TM data. The addition of SIR-A data produced increases in the classification accuracy. The increased classification accuracy of TM over the MSS is because of the better discrimination of geological materials afforded by the middle infra red bands of the TM sensor. The maximum likelihood classifier consistently produced classification accuracies 10 to 15% higher than either the minimum distance to means or decision tree classifier, this improved accuracy was obtained at the cost of greatly increased processing time. A new type of classifier the spectral shape classifier, which is computationally as fast as a minimum distance to means classifier is described. However, the results for this classifier were disappointing, being lower in most cases than the minimum distance or decision tree procedures. The classification results using only tonal features were felt to be unacceptably poor, therefore textural attributes were investigated. Texture is an important attribute used by photogeologists to discriminate lithology. In the case of TM data, texture measures were found to increase the classification accuracy by up to 15%. However, in the case of the LANDSAT MSS data the use of texture measures did not provide any significant increase in the accuracy of classification. For TM data, it was found that second order texture, especially the SGLDM based measures, produced highest classification accuracy. Contextual post processing was found to increase classification accuracy and improve the visual appearance of classified output by removing isolated misclassified pixels which tend to clutter classified images. Simple contextual features, such as mode filters were found to out perform more complex features such as gravitational filter or minimal area replacement methods. Generally the larger the size of the filter, the greater the increase in the accuracy. Production rules were used to build a knowledge based system which used tonal and textural features to identify sedimentary lithologies in each of the two test sites. The knowledge based system was able to identify six out of ten lithologies correctly.
Resumo:
Decomposition of domestic wastes in an anaerobic environment results in the production of landfill gas. Public concern about landfill disposal and particularly the production of landfill gas has been heightened over the past decade. This has been due in large to the increased quantities of gas being generated as a result of modern disposal techniques, and also to their increasing effect on modern urban developments. In order to avert diasters, effective means of preventing gas migration are required. This, in turn requires accurate detection and monitoring of gas in the subsurface. Point sampling techniques have many drawbacks, and accurate measurement of gas is difficult. Some of the disadvantages of these techniques could be overcome by assessing the impact of gas on biological systems. This research explores the effects of landfill gas on plants, and hence on the spectral response of vegetation canopies. Examination of the landfill gas/vegetation relationship is covered, both by review of the literature and statistical analysis of field data. The work showed that, although vegetation health was related to landfill gas, it was not possible to define a simple correlation. In the landfill environment, contribution from other variables, such as soil characteristics, frequently confused the relationship. Two sites are investigated in detail, the sites contrasting in terms of the data available, site conditions, and the degree of damage to vegetation. Gas migration at the Panshanger site was dominantly upwards, affecting crops being grown on the landfill cap. The injury was expressed as an overall decline in plant health. Discriminant analysis was used to account for the variations in plant health, and hence the differences in spectral response of the crop canopy, using a combination of soil and gas variables. Damage to both woodland and crops at the Ware site was severe, and could be easily related to the presence of gas. Air photographs, aerial video, and airborne thematic mapper data were used to identify damage to vegetation, and relate this to soil type. The utility of different sensors for this type of application is assessed, and possible improvements that could lead to more widespread use are identified. The situations in which remote sensing data could be combined with ground survey are identified. In addition, a possible methodology for integrating the two approaches is suggested.
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT