451 resultados para Sachs, MichaelSachs, MichaelMichaelSachs
Resumo:
Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua. At vero eos et accusam et justo duo dolores et ea rebum. Stet clita kasd gubergren, no sea takimata sanctus est Lorem ipsum dolor sit amet. Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua. At vero eos et accusam et justo duo dolores et ea rebum. Stet clita kasd gubergren, no sea takimata sanctus est Lorem ipsum dolor sit amet. Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua. At vero eos et accusam et justo duo dolores et ea rebum. Stet clita kasd gubergren, no sea takimata sanctus est Lorem ipsum dolor sit amet. Duis autem vel eum iriure dolor in hendrerit in vulputate velit esse molestie consequat, vel illum dolore eu feugiat nulla facilisis at vero eros et accumsan et iusto odio dignissim qui blandit praesent luptatum zzril delenit augue duis dolore te feugait nulla facilisi. Lorem ipsum dolor sit amet, consectetuer adipiscing elit, sed diam nonummy nibh euismod tincidunt ut laoreet dolore magna aliquam erat volutpat. Ut wisi enim ad minim veniam, quis nostrud exerci tation ullamcorper suscipit lobortis nisl ut aliquip ex ea commodo consequat. Duis autem vel eum iriure dolor in hendrerit in vulputate velit esse molestie consequat, vel illum dolore eu feugiat nulla facilisis at vero eros et accumsan et iusto odio dignissim qui blandit praesent luptatum zzril delenit augue duis dolore te feugait nulla facilisi.
LiDAR elevation data of Yukon Coast and Herschel Island in 2012, links to Shapefiles and TIFF images
Resumo:
Subgrid processes occur in various ecosystems and landscapes but, because of their small scale, they are not represented or poorly parameterized in climate models. These local heterogeneities are often important or even fundamental for energy and carbon balances. This is especially true for northern peatlands and in particular for the polygonal tundra, where methane emissions are strongly influenced by spatial soil heterogeneities. We present a stochastic model for the surface topography of polygonal tundra using Poisson-Voronoi diagrams and we compare the results with available recent field studies. We analyze seasonal dynamics of water table variations and the landscape response under different scenarios of precipitation income. We upscale methane fluxes by using a simple idealized model for methane emission. Hydraulic interconnectivities and large-scale drainage may also be investigated through percolation properties and thresholds in the Voronoi graph. The model captures the main statistical characteristics of the landscape topography, such as polygon area and surface properties as well as the water balance. This approach enables us to statistically relate large-scale properties of the system to the main small-scale processes within the single polygons.
Resumo:
The benthic fauna was investigated during the expedition ANT-XXIV/2 (2007/08) in relation to oceanographic features, biogeochemical properties and sediment characteristics, as well as the benthic, pelagic and air-breathing fauna. The results document that Maud Rise (MR) differs distinctly from surrounding deep-sea basins investigated during previous Southern Ocean expeditions (ANDEEP 2002, 2005). Considering all taxa, the overall similarity between MR and adjacent stations was low (~20% Bray-Curtis-Similarity), and analyses of single taxa show obvious differences in species composition, abundances and densities. The composition and diversity of bivalves of MR are characterised by extremely high abundances of three species, especially the small sized Vesicomya spp. Exceptionally high gastropod abundance at MR is due to the single species Onoba subantarctica wilkesiana, a small brooder that may prey upon abundant benthic foraminiferas. The abundance and diversity of isopods also show that one family, Haplomunnidae, occurs with a surprisingly high number of individuals at MR while this family was not found at any of the 40 bathyal and abyssal ANDEEP stations. Similarly, polychaetes, especially the tube-dwelling, suspension-feeder fraction, are represented by species not found at the comparison stations. Sponges comprise almost exclusively small specimens in relatively high numbers, especially a few species of Polymastiidae. Water-column sampling from the surface to the seafloor, including observations of top predators, indicate the existence of a prospering pelagic food web. Local concentrations of top predators and zooplankton are associated with a rich ice-edge bloom located over the northern slope of MR. There the sea ice melts, which is probably accelerated by the advection of warm water at intermediate depth. Over the southern slope, high concentrations of Antarctic krill (Euphausia superba) occur under dense sea ice and attract Antarctic Minke Whales (Balaenoptera bonaerensis) and several seabird species. These findings suggest that biological prosperity over MR is related to both oceanographic and sea-ice processes. Downward transport of the organic matter produced in the pelagic realm may be more constant than elsewhere due to low lateral drift over MR.
Resumo:
Fluxes of lithogenicmaterial and fluxes of three palaeo productivity proxies (organic carbon, biogenic opal and alkenones) over the past 100,000 years were determined using the 230Th-normalization method in three sediment cores from the Subantarctic South Atlantic Ocean. Features in the lithogenic flux record of each core correspond to similar features in the record of dust deposition in the EPICA Dome C ice core. Biogenic fluxes correlate with lithogenic fluxes in each sediment core. Our preferred interpretation is that South American dust, most probably from Patagonia, constitutes a major source of lithogenic material in Subantarctic South Atlantic sediments, and that past biological productivity in this region responded to variability in the supply of dust, probably due to biologically available iron carried by the dust. Greater nutrient supply as well as greater nutrient utilization (stimulated by dust) contributed to Subantarctic productivity during cold periods, in contrast to the region south of the Antarctic Polar Front (APF), where reduced nutrient supply during cold periods was the principal factor limiting productivity. The anti-phased patterns of productivity on opposite sides of the APF point to shifts in the physical supply of nutrients and to dust as cofactors regulating productivity in the Southern Ocean.