997 resultados para SYNCHRONOUS BEHAVIOR
Resumo:
Sodium ethylselenolates with functional groups X (where X = -OH, -COOH, -COOMe and -COOEt) at beta-carbon were prepared in situ by reductive cleavage of corresponding diselenide with NaBH4 either in methanol or aqueous ammonia. Treatment of these selenolates with [M2Cl2(mu-Cl)(2)(PR'(3))(2)] (M = Pd or Pt; PR'(3) = PMePh2, PnPr(3)) in different stoichiometry yielded various bi- and tri-nuclear complexes. The homoleptic hexanuclear complexes [Pd(mu-SeCH2CH2X)(2)](6) (X = OH, COOH, COOEt), were obtained by reacting Na2PdCl4 with NaSeCH2CH2X. All these complexes have been fully characterized. Molecular structures of ethylselenolates containing hydroxyl and carboxylic acid groups revealed solid state associated structures through inter-molecular hydrogen bond interactions. Trinuclear complex, [Pd3Cl2(mu-SeCH2CH2COOH)(4)(PnPr(3))(2)] (3a), was disposed in a boat form unlike chair conformation observed for the corresponding methylester complex. The effect of beta-functionality in ethylselenolate ligands towards reactivity, structures and thermal properties of palladium and platinum complexes has been extensively Studied.
Resumo:
In this article, we study traffic flow in the presence of speed breaking structures. The speed breakers are typically used to reduce the local speed of vehicles near certain institutions such as schools and hospitals. Through a cellular automata model we study the impact of such structures on global traffic characteristics. The simulation results indicate that the presence of speed breakers could reduce the global flow under moderate global densities. However, under low and high global density traffic regime the presence of speed breakers does not have an impact on the global flow. Further the speed limit enforced by the speed breaker creates a phase distinction. For a given global density and slowdown probability, as the speed limit enforced by the speed breaker increases, the traffic moves from the reduced flow phase to maximum flow phase. This underlines the importance of proper design of these structures to avoid undesired flow restrictions.
Resumo:
This article is concerned with a study on the energy absorption behavior of polyurethane (PU) foams such as flexible high resilience (HR), flexible viscoelastic (VE) and semi-rigid (SR) foams as a function of the overall foam density. Foam samples were prepared in the form of cubes by mixing appropriate polyol and isocyanate compounds produced by Huntsman International India Pvt. Ltd. in varying proportions leading to a range of densities for each type of foam. The cubical samples were tested under compressive load in a standard UTM. Based on the measured load-displacement behaviors, variations of peak load and energy-absorption attributes with respect to density are plotted for each type of foam and the possible existence of an optimum foam density is shown.
Resumo:
Bulk Ge7Se93-xSbx (21 <= x <= 32) glasses are prepared by melt quenching method and electrical switching studies have been undertaken on these samples to elucidate the type of switching and the composition and thickness dependence of switching voltages. On the basis of the compressibility and atomic radii, it has been previously observed that Se-based glasses exhibit memory switching behavior. However, the present results indicate that Ge7Se93-xSbx glasses exhibit threshold type electrical switching with high switching voltages. Further, these samples are found to show fluctuations in the current-voltage (I-V) characteristics. The observed threshold behavior of Ge7Se93-xSbx glasses has been understood on the basis of larger atomic radii and lesser compressibilities of Sb and Ge. Further. the high switching voltages and fluctuations in the I-V characteristics of Ge-Se-Sb samples can be attributed to the high resistance of the samples and the difference in thermal conductivities of different structural units constituting the local structure of these glasses. The switching voltages of Ge7Se93-xSbx glasses have been found to decrease with the increase in the Sb concentration. The observed composition dependence of switching voltages has been understood on the basis of higher metallicity of the Sb additive and also in the light of the Chemically Ordered Network (CON) model. Further, the thickness dependence of switching voltages has been studied to reassert the mechanism of switching.
Resumo:
Magnetic nanoparticles have attracted increasing attention for biomedical applications in magnetic resonance imaging, high frequency magnetic field hyperthermia therapies, and magnetic-field-gradient-targeted drug delivery. In this study, three-dimensional (3D) platinum nanostructures with large surface area that features magnetic behavior have been demonstrated. The well-developed 3D nanodendrites consist of plentiful interconnected nano-arms ∼4 nm in size. The magnetic behavior of the 3D dendritic Pt nanoparticles is contributed by the localization of surface electrons due to strongly bonded oxygen/Pluronic F127 and the local magnetic moment induced by oxygen vacancies on the neighboring Pt and O atoms. The magnetization of the nanoparticles exhibits a mixed paramagnetic and ferromagnetic state, originating from the core and surface, respectively. The 3D nanodendrite structure is suitable for surface modification and high amounts of drug loading if the transition temperature was enhanced to room temperature properly.
Resumo:
The surface chemistry and dispersion properties of aqueous Ti 3AlC2 suspension were studied in terms of hydrolysis, adsorption, electrokinetic, and rheological measurements. The Ti 3AlC2 particle had complex surface hydroxyl groups, such as ≡Ti-OH,=Al-OH, and -OTi-(OH)2, etc. The surface charging of the Ti3AlC2 particle and the ion environment of suspensions were governed by these surface groups, which thus strongly influenced the stability of Ti3AlC2 suspensions. PAA dispersant was added into the Ti3AlC2 suspension to depress the hydrolysis of the surface groups by the adsorption protection mechanism and to increase the stability of the suspension by the steric effect. Ti3AlC2 suspensions with 2.0 dwb% PAA had an excellent stability at pH=∼5 and presented the characteristics of Newtonian fluid. Based on the well-dispersed suspension, dense Ti3AlC2 materials were obtained by slip casting and after pressureless sintering. This work provides a feasible forming method for the engineering applications of MAX-phase ceramics, wherein complex shapes, large dimensions, or controlled microstructures are needed.
Resumo:
The cyclic-oxidation behavior of Ti3SiC2-base material was studied at 1100°C in air. Scale spallation and weight loss were not observed in the present tests and the weight gain would just continue if the experiments were not interrupted. The present results demonstrated that the scale growth on Ti3SiC2-base material obeyed a parabolic rate law up to 20 cycles. It then changed to a linear rate with further increasing cycles. The scales formed on the Ti3SiC2base material were composed of an inward-growing, fine-grain mixture of Ti022 + SiO2 and an outward-growing, coarse-grain TiO2. Theoretical calculations show that the mismatch in thermal expansion coefficients between the inner scale and Ti3SiC2-base matrix is small. The outer TiO2 layer was under very low compressive stress, while the inner TiO2 + SiO2 layer was under tensile stress during cooling. Scale spaliation is, therefore, not expected and the scale formed on Ti3SiC2-base material is adherent and resistant to cyclic oxidation.
Resumo:
Electrical Switching Studies on bulk Ge10Se90-xTlx ( 15 <= x <= 34) glasses have been undertaken to examine the type of switching, composition and thickness dependence of switching voltages. Unlike Ge-Se-Tl thin films which exhibit memory switching, the bulk Ge10Se90-xTlx glasses are found to exhibit threshold type switching with fluctuations seen in their current-voltage (I-V) characteristics. Further, it is observed that the switching voltages (V-T) of Ge10Se90-xTlx glasses decrease with the increase in the Tl concentration. An effort has been made to understand the observed composition dependence on the basis of nature of bonding of Tl atoms and a decrease in the chemical disorder with composition. In addition. the network connectivity and metallicity factors also contribute for the observed decrease in the switching voltages of Ge10Se90-xTlx glasses with Tl addition. It is also interesting to note that the composition dependence of switching voltages of Ge10Se90-xTlx glasses exhibit a small Cusp around the composition x = 22. which is understood on the basis of a thermally reversing window in this system in the composition range 22 <= x <= 30. The thickness dependence of switching voltages has been found to provide an insight about the type of switching mechanism involved in these samples. (C) 2009 Elsevier B.V. All rights reserved
Resumo:
Dimensional analysis using π-theorem is applied to the variables associated with plastic deformation. The dimensionless groups thus obtained are then related and rewritten to obtain the constitutive equation. The constants in the constitutive equation are obtained using published flow stress data for carbon steels. The validity of the constitutive equation is tested for steels with up to 1.54 wt%C at temperatures: 850–1200 °C and strain rates: 6 × 10−6–2 × 10−2 s−1. The calculated flow stress agrees favorably with experimental data.
Resumo:
The hot deformation behavior of beta-quenched Zr-1 Nb-1Sn was studied in the temperature range 650-1050 degrees C and strain rate range 0.001-100 s(-1) using processing maps. These maps revealed three different domains: a domain of dynamic recovery at temperatures <700 degrees C and at strain rates <3 x 10(-3) s(-1), a domain of dynamic recrystallization in the temperature range 750-950 C-degrees and at strain rates <10(-2) S-1 with a peak at 910 degrees C and 10(-3) S-1 (in alpha + beta phase field), and a domain of large-grain superplasticity in the beta phase field at strain rates <10(-2) s(-1). In order to identify the rate controlling mechanisms involved in these domains, kinetic analysis was carried out to determine the various activation parameters. In addition, the processing maps showed a regime of flow instability spanning both alpha + beta and beta phase fields. The hot deformation behavior of Zr 1Nb-1Sn was compared with that of Zr, Zr-2.5Nb and Zircaloy-2 to bring out the effects of alloy additions. (C) 2006 Elsevier BN. All rights reserved.
Resumo:
Highly ordered mesoporous carbon (MC) has been synthesized from sucrose, a non-toxic and costeffective source of carbon. X-ray diffraction, N2 adsorption–desorption isotherm and transmission electron micrograph (TEM) were used to characterize the MC. The XRD patterns show the formation of highly ordered mesoporous structures of SBA15 and mesoporous carbon. The N2 adsorptiondesorption isotherms suggest that the MC exhibits a narrow pore-size distribution with high surface area of 1559 m2/g. The potential application of MC as a novel electrode material was investigated using cyclic voltammetry for riboflavin (vitamin B2) and dopamine. MC-modified glassy carbon electrode (MC/GC) shows increase in peak current compared to GC electrode in potassium ferricyanide which clearly suggest that MC/GC possesses larger electrode area (1.8 fold) compared with bare GC electrode. The electrocatalytic behavior of MC/GC was investigated towards the oxidation of riboflavin (vitamin B2) and dopamine using cyclic voltammetry which show larger oxidation current compared to unmodified electrode and thus MC/GC may have the potential to be used as a chemically modified electrode.
Resumo:
A novel manganese phosphite-oxalate, [C2N2H10][Mn-2(II)(OH2)(2)(HPO3)(2)(C2O4)] has been hydothermally synthesized and its structure determined by single-crystal X-ray diffraction. The structure consists of neutral manganese phosphite layers, [Mn(HPO3)](infinity), formed by MnO6 octahedra and HPO3 units, cross-linked by the oxalate moieties. The organic cations occupy the middle of the 8-membered one dimensional channels. Magnetic studies indicate weak antiferromagnetic interactions between the Mn2+ ions. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
Pack ice is an aggregate of ice floes drifting on the sea surface. The forces controlling the motion and deformation of pack ice are air and water drag forces, sea surface tilt, Coriolis force and the internal force due to the interaction between ice floes. In this thesis, the mechanical behavior of compacted pack ice is investigated using theoretical and numerical methods, focusing on the three basic material properties: compressive strength, yield curve and flow rule. A high-resolution three-category sea ice model is applied to investigate the sea ice dynamics in two small basins, the whole Gulf Riga and the inside Pärnu Bay, focusing on the calibration of the compressive strength for thin ice. These two basins are on the scales of 100 km and 20 km, respectively, with typical ice thickness of 10-30 cm. The model is found capable of capturing the main characteristics of the ice dynamics. The compressive strength is calibrated to be about 30 kPa, consistent with the values from most large-scale sea ice dynamic studies. In addition, the numerical study in Pärnu Bay suggests that the shear strength drops significantly when the ice-floe size markedly decreases. A characteristic inversion method is developed to probe the yield curve of compacted pack ice. The basis of this method is the relationship between the intersection angle of linear kinematic features (LKFs) in sea ice and the slope of the yield curve. A summary of the observed LKFs shows that they can be basically divided into three groups: intersecting leads, uniaxial opening leads and uniaxial pressure ridges. Based on the available observed angles, the yield curve is determined to be a curved diamond. Comparisons of this yield curve with those from other methods show that it possesses almost all the advantages identified by the other methods. A new constitutive law is proposed, where the yield curve is a diamond and the flow rule is a combination of the normal and co-axial flow rule. The non-normal co-axial flow rule is necessary for the Coulombic yield constraint. This constitutive law not only captures the main features of forming LKFs but also takes the advantage of avoiding overestimating divergence during shear deformation. Moreover, this study provides a method for observing the flow rule for pack ice during deformation.