277 resultados para SUPERSYMMETRY
Resumo:
We combine infinite dimensional analysis (in particular a priori estimates and twist positivity) with classical geometric structures, supersymmetry, and noncommutative geometry. We establish the existence of a family of examples of two-dimensional, twist quantum fields. We evaluate the elliptic genus in these examples. We demonstrate a hidden SL(2,ℤ) symmetry of the elliptic genus, as suggested by Witten.
Resumo:
There is abundant evidence for large amounts of unseen matter in the universe. This dark matter, by its very nature, couples feebly to ordinary matter and is correspondingly difficult to detect. Nonetheless, several experiments are now underway with the sensitivity required to detect directly galactic halo dark matter through their interactions with matter and radiation. These experiments divide into two broad classes: searches for weakly interacting massive particles (WIMPs) and searches for axions. There exists a very strong theoretical bias for supposing that supersymmetry (SUSY) is a correct description of nature. WIMPs are predicted by this SUSY theory and have the required properties to be dark matter. These WIMPs are detected from the byproducts of their occasional recoil against nucleons. There are efforts around the world to detect these rare recoils. The WIMP part of this overview focuses on the cryogenic dark matter search (CDMS) underway in California. Axions, another favored dark matter candidate, are predicted to arise from a minimal extension of the standard model that explains the absence of the expected large CP violating effects in strong interactions. Axions can, in the presence of a large magnetic field, turn into microwave photons. It is the slight excess of photons above noise that signals the axion. Axion searches are underway in California and Japan. The axion part of this overview focuses on the California effort. Brevity does not allow me to discuss other WIMP and axion searches, likewise for accelerator and satellite based searches; I apologize for their omission.
Resumo:
In this thesis we study at perturbative level correlation functions of Wilson loops (and local operators) and their relations to localization, integrability and other quantities of interest as the cusp anomalous dimension and the Bremsstrahlung function. First of all we consider a general class of 1/8 BPS Wilson loops and chiral primaries in N=4 Super Yang-Mills theory. We perform explicit two-loop computations, for some particular but still rather general configuration, that confirm the elegant results expected from localization procedure. We find notably full consistency with the multi-matrix model averages, obtained from 2D Yang-Mills theory on the sphere, when interacting diagrams do not cancel and contribute non-trivially to the final answer. We also discuss the near BPS expansion of the generalized cusp anomalous dimension with L units of R-charge. Integrability provides an exact solution, obtained by solving a general TBA equation in the appropriate limit: we propose here an alternative method based on supersymmetric localization. The basic idea is to relate the computation to the vacuum expectation value of certain 1/8 BPS Wilson loops with local operator insertions along the contour. Also these observables localize on a two-dimensional gauge theory on S^2, opening the possibility of exact calculations. As a test of our proposal, we reproduce the leading Luscher correction at weak coupling to the generalized cusp anomalous dimension. This result is also checked against a genuine Feynman diagram approach in N=4 super Yang-Mills theory. Finally we study the cusp anomalous dimension in N=6 ABJ(M) theory, identifying a scaling limit in which the ladder diagrams dominate. The resummation is encoded into a Bethe-Salpeter equation that is mapped to a Schroedinger problem, exactly solvable due to the surprising supersymmetry of the effective Hamiltonian. In the ABJ case the solution implies the diagonalization of the U(N) and U(M) building blocks, suggesting the existence of two independent cusp anomalous dimensions and an unexpected exponentation structure for the related Wilson loops.
Resumo:
Searches for the supersymmetric partner of the top quark (stop) are motivated by natural supersymmetry, where the stop has to be light to cancel the large radiative corrections to the Higgs boson mass. This thesis presents three different searches for the stop at √s = 8 TeV and √s = 13 TeV using data from the ATLAS experiment at CERN’s Large Hadron Collider. The thesis also includes a study of the primary vertex reconstruction performance in data and simulation at √s = 7 TeV using tt and Z events. All stop searches presented are carried out in final states with a single lepton, four or more jets and large missing transverse energy. A search for direct stop pair production is conducted with 20.3 fb−1 of data at a center-of-mass energy of √s = 8 TeV. Several stop decay scenarios are considered, including those to a top quark and the lightest neutralino and to a bottom quark and the lightest chargino. The sensitivity of the analysis is also studied in the context of various phenomenological MSSM models in which more complex decay scenarios can be present. Two different analyses are carried out at √s = 13 TeV. The first one is a search for both gluino-mediated and direct stop pair production with 3.2 fb−1 of data while the second one is a search for direct stop pair production with 13.2 fb−1 of data in the decay scenario to a bottom quark and the lightest chargino. The results of the analyses show no significant excess over the Standard Model predictions in the observed data. Consequently, exclusion limits are set at 95% CL on the masses of the stop and the lightest neutralino.
Resumo:
O principal objetivo desta dissertação é a produção de charginos (partículas supersimétricascarregadas) leves no futuro acelerador internacional linear de e +e− (ILC) para diferentescenários de quebra de supersimetria. Charginos são partículas constituídas pela mistura docampo Wino carregado com o Higgsino carregado. A principal motivação para se estudar teorias supersimétricas deve-se ao grande número de problemas do Modelo Padrão (SM) que esta consegue solucionar, entre eles: massa dos neutrinos, matéria escura fria e o ajuste-fine (finetuning). Além disso, estudamos os princípios fundamentais que norteam a física de partículas,isto é, o princípio de gauge e o mecanismo de Higgs.
Resumo:
We classify the N = 4 supersymmetric AdS(5) backgrounds that arise as solutions of five-dimensional N = 4 gauged supergravity. We express our results in terms of the allowed embedding tensor components and identify the structure of the associated gauge groups. We show that the moduli space of these AdS vacua is of the form SU(1, m)/ (U(1) x SU(m)) and discuss our results regarding holographically dual N = 2 SCFTs and their conformal manifolds.
Resumo:
The equivalence of the noncommutative U(N) quantum field theories related by the θ-exact Seiberg-Witten maps is, in this paper, proven to all orders in the perturbation theory with respect to the coupling constant. We show that this holds for super Yang-Mills theories with N=0, 1, 2, 4 supersymmetry. A direct check of this equivalence relation is performed by computing the one-loop quantum corrections to the quadratic part of the effective action in the noncommutative U(1) gauge theory with N=0, 1, 2, 4 supersymmetry.