387 resultados para SUPERCONDUCTOR
Resumo:
By using the clinical bond theory of dielectric description, the chemical bond parameters of (Tl.Pb) - 1223 was calculated. The results show that the Sr-O, Tl-O, and Ca-O types of bond have higher ionic character and the Cu-O types of bond have more covalent, character. Mossbauer isomer shifts of Fe-57 and Sn-119 doped in (Tl, Pb) -1223 were calculated by using the chemical environmental factor, h, defined by covalency and electronic polarizability. Four valence state tin and three valence iron sites were identified ill Fe-57, and Sn-119 doped (Tl, Pb) -1223 superconductor. We conclude that all of' the Fe atoms substitute the Cu at square planar Cu (H site, whereas Sn prefers to Substitute the square pyramidal Cu (2) site.
Resumo:
By using the average bond-gap model, the chemical bond properties of REBa2Cu3O7 were calculated. The calculated covalencies for Cu(1)-O and Cu(2)-O bonds in REBa2Cu3O7 compounds are 0.41 and 0.28 respectively. Mossbauer isomer shifts of Fe-57 doped in EuBa2Cu3O7-x and Sn-119 doped in YBa2Cu3O7-x were calculated by using the chemical surrounding factor, h, defined by covalency and electronic polarizability. The valence states and sites of Fe-57 in EuBa2Cu3O7 and Sn-119 in YBa2Cu3O7-x were identified.
Resumo:
The valence of Pr and relationship between bond covalency and T-c in Y1-xPrxBa2Cu3O7 (x = 0-1) have been studied using complex chemical bond theory. The results indicate that the depression of superconductivity in Y1-xPrxBa2Cu3O7 can be reasonably explained by bond covalency difference for the bonds between CuO2 plane and CuO chain. T-c decreases with the decreasing of bond covalency difference and reaches zero when bond covalency difference is zero (or bond covalency in CuO2 exceeds that in CuO chain) at Pr concentration 0.55 and valence +3.30. These are in good agreement with the experiments and meanwhile suggest that the valence of Pr is + 3.30 in Y1-xPrxBa2Cu3O7. The results also indicate that for Pr valence less than +3.15, superconductivity always exists for whatever Pr concentration, whereas for Pr with a valence of +4.0, superconductivity disappears as soon as Pr concentration exceeds 0.19. This supports with the viewpoint that higher valence Pr will contribute more electrons to CuO2 plane, filling the mobile holes responsible for conduction. For PrBa2Cu3O7 with no Ba-site Pr, our calculation suggests that it will be a superconductor if the average valence of Pr is less than +3.15. (C) 1998 Published by Elsevier Science B.V. All rights reserved.
Resumo:
RBa2Cu3O7 (R = Pr, Sm, Eu, Gd, Dy, Y, Ho, Er, Tm) has been studied using complex chemical bond theory. The results indicated that with the decreasing of R radius, the ionicities for all considered types of bond decrease. This is in good agreement with the experimental fact that T-c decreases with the decreasing of R radius. PrBa2Cu3O7 with no Ba-site Pr in this calculation is also predicted to be a superconductor. This supports the conclusion obtained by Blackstead et al. The ionicity for each bond obeys the following order: Ba-O > R-O > Cu(2)-O(1) > Cu(2)-O(2,3) > Cu(1)-O(4) similar to Cu(1)-O(1).
Resumo:
Mossbauer spectra of Fe-57 in a thick film YBa2(Cu0.97Fe0.03)(3)O7-x irradiated by a large dose of gamma-rays from Co-60 have been measured. The variation of the relative intensities of some subspectra of Fe-57 in the. Mossbauer spectra of the thick film YBa2(Cu0.97Fe0.03)(3)O7-x after irradiation can be observed. This variation indicates that the change of the coordination environment around some Fe atoms in the lattice occurs due to irradiation. The relative intensity of subspectrum D1(Fe) at the Cu(1) site decreases and that of subspectrum D4(Fe) at the Cu(1) site increases. This may be because of the possible oxygen atom hopping between the coordination environments of D1(Fe) and D4(Fe) in the lattice caused by irradiation. The effect of irradiation on the coordination environment around the Fe atom at the Cu(2) site is not appreciable. (C) 1997 Elsevier Science B.V.
Resumo:
Superconductor mixed oxides were often used as catalysts at higher temperature in gas phase oxidations, and considered not suitable for lower temperature reactions in the liquid-solid phase; here the catalysis of YBa2Cu3O7+/-x and Y2BaCuO5+/-x in the phenol hydroxylation at lower temperature with H2O2 as oxygen donor was studied, and found that the superconductor YBa2Cu3O7+/-x, has no catalytic activity for phenol hydroxylation, but Y2BaCuO5+/-x does, even has better catalytic activity and stability than most previously reported ones. With the studies of catalysis of other simple metal oxides and perovskite-like mixed oxides, a radical substitution mechanism is proposed and the experimental facts are explained clearly, and draw a conclusion that the perovskite-like mixed oxides with (AO)(ABO(3)) and (AO)2(ABO(3)) structure have better catalytic activity than the simple perovskite oxides with (ABO(3))(3) structure alone, and (AO) structure unit is the key for the mixed oxides to have the phenol hydroxylation activity. No pollution of this process is very important for its further industrial application.
Resumo:
Superconductor Y-Ba-Cu-O mixed oxides were synthesized and their catalysis in phenol hydroxylation was studied too. Results show that, Y2BaCuO5 has better activity than that of YBa2Cu3O7-x, With the catalysis study of another mixed oxide La2CuO4 a conclusion that AO structure unit is the key for mixed oxides to have high activity in phyenol hydroxylation was drawn. Meanwhile, the effects of reaction temperature, medium and medium (water) pH on phenol hydroxylation catalyzed by Y2BaCuO5 and the stability of the mixed oxides were also studied.
Resumo:
EuBa2(Cu1-xFex)3O7-y has been investigated by the Fe-57 and Eu-151 Mossbauer effect. The Fe-57 Mossbauer spectra of the EuBa2(Cu1xFex)3O7-y without or with DC electric current (the current strength I = 0.5A) around the superconducting transition temperature have been measured. The results indicate that the isomer shift (IS) and the quadrupole splitting (QS) of the Fe replacing the Cu(2) vary neither with increasing the Fe content nor with the small DC eletric current passing the superconductor and that the IS and the QS of the Fe replacing the Cu(1) vary with the Fe content. Especially, the IS and the QS of the Fe (D3) replacing the Cu(1) are changed when the small electric current passes the superconductor at 80K.
Resumo:
The bioinorganic complexes of europium with N-acetyl-DL-alanine, N-acetyl-DL-valine, and DL-alanyl-DL-alanine have been synthesized and the Mossbauer spectra at room temperature have been measured for these solid state complexes. The Mossbauer parameters indicate that the water molecules in these complexes are not directly linked to the central europium ion and are outside the coordination sphere of europium and biological ligands, and that the chemical bond between the europium ion and the ligands may be predominantly ionic in character, with the possibility of partial covalent contribution.
Resumo:
Results are reported on the a-b plane dielectric function (epsilon) of thin-film c-axis NdBa2Cu3O7-delta with close to optimal oxygen doping (T-c similar to 90 K) in the mid-infrared (wavelength 3.392 mum) over the temperature range 85 K to 300 K. An attenuated total reflectance technique based on the excitation of surface plasmon polaritons is used. The results show that \epsilon (r)\ decreases quasi-linearly with increasing temperature, while Ei is invariant with temperature to within experimental uncertainties. Representative values are epsilon = [epsilon (r) + i epsilon (i)] = (-12.9 +/- 0.6) + i(23.0 +/- 1.5) at T similar to 295 K and epsilon = (-15.7 +/- 0.7) + i(23.5 +/- 1.1) at T similar to 90 K. The raw data an interpreted in terms of the generalized Drude model which gives effective scattering rates (1/tau*) that increase with temperature from about 3800 cm(-1) at 90 K to about 4300 cm(-1) at 295 K. There are indications of a superlinear T-dependence in the scattering, 1/tau*: a fit to a function of the form 1/tau* = A + BTalpha gives alpha = 2.8 +/- 0.7. The effective plasma frequency, omega (p)*, with an average value of approximately 21 000 cm(-1) was independent of temperature.
Resumo:
Environmental protection has now become paramount as evidence mounts to support the thesis of human activity-driven global warming. A global reduction of the emissions of pollutants into the atmosphere is therefore needed and new technologies have to be considered. A large part of the emissions come from transportation vehicles, including cars, trucks and airplanes, due to the nature of their combustion-based propulsion systems. Our team has been working for several years on the development of high power density superconducting motors for aircraft propulsion and fuel cell based power systems for aircraft. This paper investigates the feasibility of all-electric aircraft based on currently available technology. Electric propulsion would require the development of high power density electric propulsion motors, generators, power management and distribution systems. The requirements in terms of weight and volume of these components cannot be achieved with conventional technologies; however, the use of superconductors associated with hydrogen-based power plants makes possible the design of a reasonably light power system and would therefore enable the development of all-electric aero-vehicles. A system sizing has been performed both for actuators and for primary propulsion. Many advantages would come from electrical propulsion such as better controllability of the propulsion, higher efficiency, higher availability and less maintenance needs. Superconducting machines may very well be the enabling technology for all-electric aircraft development.
Resumo:
Using the theory of Eliashberg and Nambu for strong-coupling superconductors, we have calculated the gap function for a model superconductor and a selection of real superconductors includong the elements Al, Sn, Tl, Nb, In, Pb and Hg and one alloy, Bi2Tl. We have determined thetemperature-dependent gap edge in each and found that in materials with weak electron-phonon ($\lambda 1.20$), not only is the gap edge double valued but it also departs significantly from the BCS form and develops a shoulderlike structure which may, in some cases, denote a gap edge exceeding the $T = 0$ value. These computational results support the insights obtained by Leavens in an analytic consideration of the general problem. Both the shoulder and double value arise from a common origin seated in the form of the gap function in strong coupled materials at finite temperatures. From the calculated gap function, we can determine the densities of states in the materials and the form of the tunneling current-voltage characteristics for junctions with these materials as electroddes. By way of illustration, results are shown for the contrasting cases of Sn ($\lambda=0.74$) and Hg ($\lambad=1.63$). The reported results are distinct in several ways from BCS predictions and provide an incentive determinative experimental studies with techniques such as tunneling and far infrared absorption.
Resumo:
Spectroscopic absorption and emission measurements have been used to study laser deposition of YBCO films. They show that >95% of the monatomic Y and Ba initially ablated from the target undergo gas-phase chemical combination before film deposition. In contrast, considerable monatomic Cu persists into the deposition region. in this region, equilibrated gas temperatures are of the order of 2700 K. It is suggested that this high temperature facilitates film crystallization and epitaxial growth. The survival of monatomic Cu in the plume to the site of deposition is a manifestation of its endothermic reaction with O-2.
Resumo:
YBaCuO films with (001) orientation have been deposited on MgO by laser ablation at 248 and 193 nm wavelengths. Transitions to zero resistance at 87 K and 90 K have been reproducibly achieved in the respective cases. Optical spectroscopic studies of the plume show the importance of molecular species in the ablation if good superconducting films are to be formed. The substrate position in the plume and substrate temperature are important in determining film quality. The influence of oxygen gas pressure can be significant. SEM studies show the occurrence of second-phase outcrops with a needle-like morphology aligned over the whole area of the film along two mutually perpendicular directions on the film surface. Film orientation is determined by XRD and R against T is measured down to 80 K in a hydrogen exchange gas cryostat. Characterization studies of device-related multilayer YBaCuO/PrBaCuO structures by XRD are presented.
Resumo:
Despite being the most suitable candidates for solenoid pole pieces in state-of-the-art superconductor- based electromagnets, the intrinsic magnetic properties of heavy rare earth metals and their alloys have gained comparatively little attention. With the potential of integration in micro- and nanoscale devices, thin films of Gd, Dy, Tb, DyGd and DyTb were plasma-sputtered and investigated for their in-plane magnetic properties, with an emphasis on magnetisation vs. temperature profiles. Based on crystal structure analysis of the polycrystalline rare earth films, which consist of a low magnetic moment FCC layer at the seed interface topped with a higher moment HCP layer, an experimental protocol is introduced which allows the direct magnetic analysis of the individual layers. In line with the general trend of heavy lanthanides, the saturation magnetisation was found to drop with increasing unit cell size. In-situ annealed rare earth films exceeded the saturation magnetisation of a high-moment Fe65Co35 reference film in the cryogenic temperature regime, proving their potential for pole piece applications; however as-deposited rare earth films were found completely unsuitable. In agreement with theoretical predictions, sufficiently strained crystal phases of Tb and Dy did not exhibit an incommensurate magnetic order, unlike their single-crystal counterparts which have a helical phase. DyGd and DyTb alloys followed the trends of the elemental rare earth metals in terms of crystal structure and magnetic properties. Inter-rare-earth alloys hence present a desirable blend of saturation magnetisation and operating temperature.