946 resultados para SPORT SCIENCES
Resumo:
Crum's notion of idola as a conceptual fallacy is interesting, somewhat helpful, yet potentially limiting in a critique of research in PE if one is to accept a postmodern or poststructuralist position. In line with a poststructuralist position, a strength in Crum's application of idola is the recognition that research in PE is constituted by the researcher and their social world which, in turn, constitutes the researcher. Limitations to Crum's idola thesis arise when the notion is used to suggest that as a result of the researcher's lack of conceptual clarity, the quest for knowledge or truth about PE pedagogy is undermined as this assumes that meanings can be unequivocal and precede a linear research process. In contrast, this response argues that a priority in research should be to examine how, and under what conditions, particular discourses come to shape PE practices in schools and universities. In a postmodern world, conceptual clarity should not be the goal but rather a coming to understand how PE knowledge and practice is being constructed across sites and contexts.
Resumo:
We compared changes in muscle fibre composition and muscle strength indices following a 10 week isokinetic resistance training programme consisting of fast (3.14 rad(.)s(-1)) or slow (0.52 rad(.)s(-1)) velocity eccentric muscle contractions. A group of 20 non-resistance trained subjects were assigned to a FAST (n = 7), SLOW (n = 6) or non-training CONTROL (n = 7) group. A unilateral training protocol targeted the elbow flexor muscle group and consisted of 24 maximal eccentric isokinetic contractions (four sets of six repetitions) performed three times a week for 10 weeks. Muscle biopsy samples were obtained from the belly of the biceps brachii. Isometric torque and concentric and eccentric torque at 0.52 and 3.14 rad(.)s(-1) were examined at 0, 5 and 10 weeks. After 10 weeks, the FAST group demonstrated significant [mean (SEM)] increases in eccentric [29.6 (6.4)%] and concentric torque [27.4 (7.3) %] at 3.14 rad(.)s(-1), isometric torque [21.3 (4.3)%] and eccentric torque [25.2 (7.2) %] at 0.52 rad(.)s(-1). The percentage of type I fibres in the FAST group decreased from [53.8 (6.6)% to 39.1 (4.4)%] while type lib fibre percentage increased from [5.8 (1.9)% to 12.9 (3.3)%; P < 0.05]. In contrast. the SLOW group did not experience significant changes in muscle fibre type or muscle torque. We conclude that neuromuscular adaptations to eccentric training stimuli may be influenced by differences in the ability to cope with chronic exposure to relatively fast and slow eccentric contraction velocities. Possible mechanisms include greater cumulative damage to contractile tissues or stress induced by slow eccentric muscle contractions.
Resumo:
The adaptations of muscle to sprint training can be separated into metabolic and morphological changes. Enzyme adaptations represent a major metabolic adaptation to sprint training, with the enzymes of all three energy systems showing signs of adaptation to training and some evidence of a return to baseline levels with detraining. Myokinase and creatine phosphokinase have shown small increases as a result of short-sprint training in some studies and elite sprinters appear better able to rapidly breakdown phosphocreatine (PCr) than the sub-elite. No changes in these enzyme levels have been reported as a result of detraining. Similarly, glycolytic enzyme activity (notably lactate dehydrogenase, phosphofructokinase and glycogen phosphorylase) has been shown to increase after training consisting of either long (> 10-second) or short (< 10-second) sprints. Evidence suggests that these enzymes return to pre-training levels after somewhere between 7 weeks and 6 months of detraining. Mitochondrial enzyme activity also increases after sprint training, particularly when long sprints or short recovery between short sprints are used as the training stimulus. Morphological adaptations to sprint training include changes in muscle fibre type, sarcoplasmic reticulum, and fibre cross-sectional area. An appropriate sprint training programme could be expected to induce a shift toward type Ha muscle, increase muscle cross-sectional area and increase the sarcoplasmic reticulum volume to aid release of Ca2+. Training volume and/or frequency of sprint training in excess of what is optimal for an individual, however, will induce a shift toward slower muscle contractile characteristics. In contrast, detraining appears to shift the contractile characteristics towards type IIb, although muscle atrophy is also likely to occur. Muscle conduction velocity appears to be a potential non-invasive method of monitoring contractile changes in response to sprint training and detraining. In summary, adaptation to sprint training is clearly dependent on the duration of sprinting, recovery between repetitions, total volume and frequency of training bouts. These variables have profound effects on the metabolic, structural and performance adaptations from a sprint-training programme and these changes take a considerable period of time to return to baseline after a period of detraining. However, the complexity of the interaction between the aforementioned variables and training adaptation combined with individual differences is clearly disruptive to the transfer of knowledge and advice from laboratory to coach to athlete.
Resumo:
Performance in sprint exercise is determined by the ability to accelerate, the magnitude of maximal velocity and the ability to maintain velocity against the onset of fatigue. These factors are strongly influenced by metabolic and anthropometric components. Improved temporal sequencing of muscle activation and/or improved fast twitch fibre recruitment may contribute to superior sprint performance. Speed of impulse transmission along the motor axon may also have implications on sprint performance. Nerve conduction velocity (NCV) has been shown to increase in response to a period of sprint training. However, it is difficult to determine if increased NCV is likely to contribute to improved sprint performance. An increase in motoneuron excitability, as measured by the Hoffman reflex (H-reflex), has been reported to produce a more powerful muscular contraction, hence maximising motoneuron excitability would be expected to benefit sprint performance. Motoneuron excitability can be raised acutely by an appropriate stimulus with obvious implications for sprint performance. However, at rest reflex has been reported to be lower in athletes trained for explosive events compared with endurance-trained athletes. This may be caused by the relatively high, fast twitch fibre percentage and the consequent high activation thresholds of such motor units in power-trained populations. In contrast, stretch reflexes appear to be enhanced in sprint athletes possibly because of increased muscle spindle sensitivity as a result of sprint training. With muscle in a contracted state, however, there is evidence to suggest greater reflex potentiation among both sprint and resistance-trained populations compared with controls. Again this may be indicative of the predominant types of motor units in these populations, but may also mean an enhanced reflex contribution to force production during running in sprint-trained athletes. Fatigue of neural origin both during and following sprint exercise has implications with respect to optimising training frequency and volume. Research suggests athletes are unable to maintain maximal firing frequencies for the full duration of, for example, a 100m sprint. Fatigue after a single training session may also have a neural manifestation with some athletes unable to voluntarily fully activate muscle or experiencing stretch reflex inhibition after heavy training. This may occur in conjunction with muscle damage. Research investigating the neural influences on sprint performance is limited. Further longitudinal research is necessary to improve our understanding of neural factors that contribute to training-induced improvements in sprint performance.
Resumo:
Purpose: Most studies that use either a single exercise session, exercise training, or a cross-sectional design have failed to find a relationship between exercise and plasma lipoprotein(a) [Lp(a)] concentrations. However, a few studies investigating the effects of longer and/or more strenuous exercise have shown elevated Lp(a) concentrations, possibly as an acute-phase reactant to muscle damage. Based on the assumption that greater muscle damage would occur with exercise of longer duration, the purpose of the present study was to determine whether exercise of longer duration would increase Lp(a) concentration and creatine kinase. (CK) activity more than exercise of shorter duration. Methods: Ten endurance-trained men (mean +/- SD: age, 27 +/- 6 yr; maximal oxygen consumption [(V)over dotO(2max)], 57 +/- 7 mL(.)kg(-1) min(-1)) completed two separate exercise sessions at 70% (V)over dotO(2max). One session required 900 kcal of energy expenditure (60 +/- 6 min), and the other required 1500 kcal (112 +/- 12 min). Fasted blood samples were taken immediately before (0-pre), immediately after (0-post), 1 d after (1-post), and 2 d after (2-post) each exercise session. Results: CK activity increased after both exercise sessions (mean +/- SE; 800 kcal: 0-pre 55 +/- 11, 1-post 168 +/- 64 U(.)L(-1.)min(-1); 1500 kcal: 0-pre 51 +/- 5, 1-post 187 +/- 30, 2-post 123 +/- 19 U(.)L(-1.)min(-1); P < 0.05). However, median Lp(a) concentrations were not altered by either exercise session (800 kcal: 0-pre 5.0 mg(.)dL(-1), 0-post 3.2 mg(.)dL(-1), 1-post 4.0 mg(.)dL(-1), 2-post 3.4 mg(.)dL(-1); 1500 kcal: 0-pre 5.8 mg(.)dL(-1), 0-post 4.3 mg(.)dL(-1), 1-post 3.2 mg(.)dL(-1), 2-post 5.3 mg(.)dL(-1)). In addition, no relationship existed between exercise-induced changes in CK activity and Lp(a) concentration (800 kcal: r = -0.26; 1500 kcal: r = -0.02). Conclusion: These results suggest that plasma Lp(a) concentration will not increase in response to minor exercise-induced muscle damage in endurance-trained runners.
Resumo:
A deficiency in secretory immunoglobulin A (sIgA) is associated with recurrent upper respiratory tract infections both in the general community and in elite athletes. The aim of this paper was to investigate the effect of aerobic exercise and relaxation on various indices of sIgA in 12 male and 8 female adults who varied in levels of recreational activity. Salivary samples were obtained before, immediately after and 30 minutes after an incremental cycle ergometer test to fatigue. after 30 minutes of cycling at 30% or 60 % of maximum heart rate, and after 30 minutes of relaxation with guided imagery. Each session was run on a separate day. When expressed in relation to changes in salivary flow rate, sIgA did not change after exercise. However, both the absolute concentration and secretion rate of sIgA increased during relaxation (167 +/- 179 mug ml(-1), p < 0.001: and 37 +/- 71 g(.)min(-1), p < 0.05 respectively). Nonspecific protein increased more than sIgA during incremental exercise to fatigue (decrease in the sIgA/protein ratio 92 +/- 181 g(.)mg protein(-1), p(0.05), but sIgA relative to protein did not change during relaxation. Our findings suggest that sIgA secretion rate is a more appropriate measure of sIgA than sIgA relative to protein, both for exercise and relaxation. These data suggest the possibility of using relaxation to counteract the negative effects of intense exercise on sIgA levels.
Resumo:
The focus of this paper is the social construction of physical education teacher education (PETE) and its fate within the broader process of curriculum change in the physical activity field. Our task is to map the dimensions of a research program centered on the social construction of the physical activity field and PETE in higher education. Debates in the pages of Quest and elsewhere over the past two decades have highlighted not only the contentious nature of PETE practices and structures but also that PETE is changing. This paper offers one way of making sense of the ongoing process of contestation and struggle through the presentation of a theoretical framework. This framework, primarily drawing upon the work of Lave and Wenger (1991) and Bernstein (1990, 1996), is described before it is used to study the social construction of PETE in Australia. We assess the progress that has been made in developing this research program, and the questions already evident for further developments of a program of study of the physical activity field in higher education.
Resumo:
The repeatability of initial values and rate of change of EMG signal mean spectral frequency (MNF), average rectified values (ARV), muscle fiber conduction velocity (CV) and maximal voluntary contraction (MVC) was investigated in the vastus medialis obliquus (VMO) and vastus lateralis (VL) muscles of both legs of nine healthy male subjects during voluntary, isometric contractions sustained for 50 s at 50% MVC. The values of MVC were recorded for both legs three times on each day and for three subsequent days, while the EMG signals have been recorded twice a day for three subsequent days. The degree of repeatability was investigated using the Fisher test based upon the ANalysis Of VAriance (ANOVA), the Standard Error of the Mean (SEM) and the Intraclass Correlation Coefficient (ICC). Data collected showed a high level of repeatability of MVC measurement (normalized SEM from 1.1% to 6.4% of the mean). MNF and ARV initial values also showed a high level of repeatability (ICC > 70% for all muscles and legs except right VMO). At 50% MVC level no relevant pattern of fatigue was observed for the VMO and VL muscles, suggesting that other portions of the quadriceps might have contributed to the generated effort. These observations seem to suggest that in the investigation of muscles belonging to a multi-muscular group at submaximal level, the more selective electrically elicited contractions should be preferred to voluntary contractions. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
This study assessed the quadriceps and hamstring strength before and 6 months after anterior cruciate ligament (ACL) reconstructive surgery using the hamstrings and related the findings to functional performance. Six months after surgery is a critical time for assessment as this is when players are returning to sport. Maximum isokinetic strength of 31 patients with complete unilateral ACL ruptures was measured at speeds of 60 degrees and 120 degrees per second. Functional assessment included the single hop, the triple hop, the shuttle run, side-step and carioca tests. All patients underwent a controlled quadriceps emphasized home-based physiotherapy program both before and after surgery. Results show that before surgery there was a 7.3% quadriceps strength deficit at 60 degrees per second compared to the uninjured leg but no hamstring strength deficit. After surgery there was a statistically significant but relatively small loss of muscle strength. The quadriceps strength deficit had increased to 12% and there was a 10% hamstring deficit. Post-operatively there was an 11% and 6.3% improvement in the hop tests, a 9% (P < 0.01) improvement in the shuttle run, a 15% (P < 0.001) improvement in the side step and a 24% (P < 0.001) improvement in the carioca tests (P < 0.001) despite the loss of muscle strength. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Background: Supplementation with propionyl-L-carnitine (PLC) may be of use in improving the exercise capacity of people with peripheral arterial disease. Methods: After a 2-wk exercise familiarization phase, seven subjects displaying intermittent claudication were studied over a 12-wk period consisting of three 4-wk phases, baseline (B), supplementation (S), and placebo (P). PLC was supplemented at 2 g(.)d(-1), and subjects were blinded to the order of supplementation. Unilateral calf strength and endurance were assessed weekly. Walking performance was assessed at the end of each phase using an incremental protocol, during which respiratory gases were collected. Results: Although there was not a significant increase in maximal walking time (similar to 14%) in the whole group, walking time improved to a greater extent than the individual baseline coefficient of variation in four of the seven subjects. The changes in walking performance were correlated with changes in the respiratory exchange ratio both at steady state (r = 0.59) and maximal exercise (r = 0.79). Muscle strength increased significantly from 695 +/- 198 N to 812 +/- 249 N by the end of S. Changes in calf strength from B to S were modestly related to changes in walking performance (r = 0.56). No improvements in calf endurance were detected throughout the study. Conclusions: These preliminary data suggest that, in addition to walking performance, muscle strength can be increased in PAD patients after 4 wk of supplementation with propionyl-L-carnitine.
Resumo:
Purpose: The aim of this study was to assess the accuracy of a (CO2)-C-13 breath test for the prediction of short-duration energy expenditure. Methods: Eight healthy volunteers walked at 1.5 km.h(-1) for 60 min followed by 60-min recovery. During this time, the energy cost of physical activity was measured via respiratory calorimetry and a C-13 bicarbonate breath test. A further eight subjects were tested using the same two methods during a 60-min cycle at 0.5 kp. 30 ipm followed by a 60-min recovery. The rate of appearance of (CO2)-C-13, (RaCO2) was measured and the mean ratio, (V) over dot CO2/RaCO2 was used to calculate energy expenditure using the isotopic approach. Results: As would be expected, there was a significant difference in the energy cost of walking and cycling using both methods (P < 0.05). However. no significant differences were observed between respiratory calorimetry and the isotope method for measurement of energy expenditure while walking or cycling. Conclusions: These data suggest that the C-13 breath test is a valid method that can be used to measure the energy cost of short duration physical activity in a field setting.
Resumo:
Purpose: The training program undertaken by many athletes will affect directly the total, habitual energy requirements of that individual. Unless that energy requirement is met via the diet and or supplementation, chronic negative energy balance will ensue, which will have both short-term and long-term effects not only on performance but also on general health. The aim of this research was therefore to determine the energy expenditure (EE) and hence energy requirements of lightweight female rowers and, further, to compare this with their self-reported energy intake (EI). Methods: The El of seven lightweight female rowers was measured using a self-reported 4-d weighed dietary record. EE was determined using the doubly labeled water (DLW) technique over a 14-d period. Results: The mean (+/-SD) age, height, and weight of the subjects was 20 (+/-1.1) yr, 168.8 (+/-4.7) cm, and 60.9 (+/-23) kg, respectively. The rowers self-reported El was 2214 (+/-313) kcal.d(-1) and their total EE was 3957 (+/-1219) kcal.d(-1). After adjusting total EE for changes in body weight (mean (+/-SD) - 1.2 (+/-1.2) kg), the comparison between adjusted El and reported showed a bias to underreporting of 1133 (+/-1539) kcal.d(-1) or 34%. The bias was not consistent across adjusted El, and two of the seven subjects overreported their intake. Conclusions: Due to the underreporting of EI, diet recording may not be an appropriate way of assessing energy requirements in lightweight female rowers. A benefit of accurately determining energy requirements, as with DLW, is that female lightweight rowers will be able to successfully manipulate their EI and achieve the set weight cut-off for participation without compromising their health or performance.
Resumo:
Objective: This study aimed to describe discharge outcomes and explore their correlates for patients rehabilitated after stroke at an Australian hospital from 1993 to 1998. Design: Data on length of stay, discharge functional status, and discharge destination were retrospectively obtained from medical records. Patients' actual rehabilitation length of stay was compared with the Australian National Sub-Acute and Non-Acute Patient predicted length of stay. The change in length of stay over the 5-yr period from 1993 to 1998 was documented. Results: Patients' mean converted motor FIMTM scores improved from 53.1 at admission to 74.1 at discharge. Lower admission-converted motor FIM scores were related to longer length of stay, lower discharge-converted motor FIM scores, and the need for a change in living situation on discharge. Conclusion: The results of this study provide Australian data on discharge outcomes after stroke to assist in the planning and delivery of appropriate interventions to individual patients during rehabilitation.
Resumo:
In this study we examined the repeatability and reliability of the surface electromyographic (sEMG) signal mean frequency (MNF), average rectified value (ARV) and conduction velocity (CV) measured for the sternocleidomastoid (SCM) and the anterior scalene (AS) muscles in nine healthy volunteers during 15-s isometric cervical flexion contractions at 50% of the maximal voluntary contraction level over 3 non-consecutive days. Repeatability and reliability estimates were obtained for the initial values and rates of change of each sEMG variable by using both the Intraclass Correlation Coefficient (ICC) and the normalised standard error of the mean (nSEM). Results from SCM indicated good levels of repeatability for the initial value and slope of ARV (ICC > 65%). For the AS, high levels of repeatability were identified for the initial value of MNF (ICC > 70%) and the slope of ARV (ICC > 75%). Values of nSEM in the range 2.8-7.2% were obtained for the initial values of MNF and CV for both SCM and AS, indicating clinically acceptable measurement precision. The low value obtained for the nSEM of the initial value of MNF for the AS, in combination with the high ICC, indicates that of all of the variables examined, this variable could offer the best normative index to distinguish between subjects with and without neck pain, and represents the sEMG variable of choice for future evaluation purposes.