984 resultados para SNAKE VENOM METALLOPROTEINASE
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Phospholipases A(2) homologues are found in the venom of Crotalinae snakes, being their main action related to myonecrosis induction. Although many studies on these toxins had already been performed, their mechanism of action remains unclear. Here, important aspects about these toxins are reviewed, including their correct biological assembly and how essential is the natural substitution D49K for their catalytic inactivity.
Resumo:
Sarafotoxins are peptides isolated from the Atractaspisw snake venom. with strong constrictor effect on cardiac and smooth muscle. They are structurally and functionally related to endothelins. The sarafotoxins precursor cDNA predicts an unusual structure 'rosary-type', with 12 successive similar stretches of sarafotoxin (SRTX) and spacer, in the present work, the recombinant precursor of SRTXs was sub-cloned and expressed in the yeast Pichia pastoris. and secreted to the culture medium, Characterization by SDS-PAGE, immunoblot, mass spectrometry and biological activity, suggests that intact precursor was expressed but processing into mature toxins also occurred. Furthermore, our results indicate that the correct proportion of sarafotoxin types as contained in the precursor, is obtained in the yeast culture medium. Contractile effects of the expressed toxins, on rat and Bothrops jararaca isolated aorta, were equivalent to 5 X 10(-10) M and 5 x 10(-11) M of sarafotoxin b, respectively. The enzymes responsible for the complete maturation of sarafotoxins precursor are still unknown. Our results strongly suggest that the yeast Pichia pastoris is able to perform such a maturation process. Thus, the yeast Pichia pastoris may offer an alternative to snake venom gland to tentatively identify the molecular process responsible for SRTXs release. (C) 2001 Elsevier B.V. Ltd. All rights reserved.
Resumo:
The electrophile Ca2+ is an essential multifunctional co-factor in the phospholipase A(2) mediated hydrolysis of phospholipids. Crystal structures of an acidic phospholipase A(2) from the venom of Bothrops jararacussu have been determined both in the Ca2+ free and bound states at 0.97 and 1.60 angstrom resolutions, respectively. In the Ca2+ bound state, the Ca2+ ion is penta-coordinated by a distorted pyramidal cage of oxygen and nitrogen atoms that is significantly different to that observed in structures of other Group I/II phospholipases A(2). In the absence of Ca2+, a water molecule occupies the position of the Ca2+ ion and the side chain of Asp49 and the calcium-binding loop adopts a different conformation. (c) 2005 Elsevier SAS. All rights reserved.
Resumo:
Bucain is a three-finger toxin, structurally homologous to snake-venom muscarinic toxins, from the venom of the Malayan krait Bungarus candidus. These proteins have molecular masses of approximately 6000-8000 da and encompass the potent curaremimetic neurotoxins which confer lethality to Elapidae and Hydrophidae venoms. Bucain was crystallized in two crystal forms by the hanging-drop vapour-diffusion technique in 0.1 M sodium citrate pH 5.6, 15% PEG 4000 and 0.15 M ammonium acetate. Form I crystals belong to the monoclinic system space group C2, with unit-cell parameters a = 93.73, b = 49.02, c = 74.09 Angstrom, beta = 111.32degrees, and diffract to a nominal resolution of 1.61 Angstrom. Form II crystals also belong to the space group C2, with unit-cell parameters a = 165.04, b = 49.44, c = 127.60 Angstrom, beta = 125.55degrees, and diffract to a nominal resolution of 2.78 Angstrom. The self-rotation function indicates the presence of four and eight molecules in the crystallographic asymmetric unit of the form I and form II crystals, respectively. Attempts to solve these structures by molecular-replacement methods have not been successful and a heavy-atom derivative search has been initiated.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Testicular biopsy has been a complementary technique for clinical and research purposes to evaluate reproductive function in males. However, hemorrhage, inflammation, degeneration, and adhesion are factors that might limit the use of this procedure. In order to minimize these potential problems, fibrin glue derived from snake venom, a tissue adhesive with sealing, hemostatic, and healing properties, was used in conjunction with bilateral testicular biopsy with the Tru-Cut needle and was compared with a more conventional technique that uses nylon suture. Thirty mature rams were randomly assigned to three groups of 10 animals each, as follows: nonsurgical control group (no scrotal surgery, or biopsy); biopsy + glue group (fibrin glue on puncture sites and skin incisions) and biopsy + suture group (compression with swab on puncture sites and suturing of skin incision). The surgeries of the rams in the biopsy groups were performed on the same day, which was designated Day 0 for all three groups. Data of scrotal circumference, number of spermatozoa per ejaculum, percentage of morphologically abnormal spermatozoa, spermatozoa motility, and serum testosterone concentrations from Days -7, 20, 40, 60, 80 and 100 were evaluated. There were no significant differences between groups within days for any of the parameters evaluated. In conclusion, the testicular biopsy procedure using the Tru-Cut needle in conjunction with conventional nylon suture or the more novel fibrin glue in rams did not affect any of the parameters of testicular function evaluated in this study and was shown to be relatively simple, safe and efficient. (C) 2002 Published by Elsevier B.V. B.V.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Background. An interaction between lectins from marine algae and PLA 2 from rattlesnake was suggested some years ago. We, herein, studied the effects elicited by a small isolectin (BTL-2), isolated from Bryothamnion triquetrum, on the pharmacological and biological activities of a PLA 2 isolated from rattlesnake venom (Crotalus durissus cascavella), to better understand the enzymatic and pharmacological mechanisms of the PLA 2 and its complex. Results. This PLA2 consisted of 122 amino acids (approximate molecular mass of 14 kDa), its pI was estimated to be 8.3, and its amino acid sequence shared a high degree of similarity with that of other neurotoxic and enzymatically-active PLA2s. BTL-2 had a molecular mass estimated in approximately 9 kDa and was characterized as a basic protein. In addition, BTL-2 did not exhibit any enzymatic activity. The PLA2 and BTL-2 formed a stable heterodimer with a molecular mass of approximately 24-26 kDa, estimated by molecular exclusion HPLC. In the presence of BTL-2, we observed a significant increase in PLA2 activity, 23% higher than that of PLA2 alone. BTL-2 demonstrated an inhibition of 98% in the growth of the Gram-positive bacterial strain, Clavibacter michiganensis michiganensis (Cmm), but only 9.8% inhibition of the Gram-negative bacterial strain, Xanthomonas axonopodis pv passiflorae (Xap). PLA2 decreased bacterial growth by 27.3% and 98.5% for Xap and Cmm, respectively, while incubating these two proteins with PLA2-BTL-2 inhibited their growths by 36.2% for Xap and 98.5% for Cmm. PLA2 significantly induced platelet aggregation in washed platelets, whereas BTL-2 did not induce significant platelet aggregation in any assay. However, BTL-2 significantly inhibited platelet aggregation induced by PLA2. In addition, PLA 2 exhibited strong oedematogenic activity, which was decreased in the presence of BTL-2. BTL-2 alone did not induce oedema and did not decrease or abolish the oedema induced by the 48/80 compound. Conclusion. The unexpected results observed for the PLA2-BTL-2 complex strongly suggest that the pharmacological activity of this PLA2 is not solely dependent on the presence of enzymatic activity, and that other pharmacological regions may also be involved. In addition, we describe for the first time an interaction between two different molecules, which form a stable complex with significant changes in their original biological action. This opens new possibilities for understanding the function and action of crude venom, an extremely complex mixture of different molecules. © 2008 Oliveira et al; licensee BioMed Central Ltd.
Resumo:
Catalytically inactive phospholipase A2 (PLA2) homologues play key roles in the pathogenesis induced by snake envenomation, causing extensive tissue damage via a mechanism still unknown. Although, the amino acid residues directly involved in catalysis are conserved, the substitution of Asp49 by Arg/Lys/Gln or Ser prevents the binding of the essential calcium ion and hence these proteins are incapable of hydrolyzing phospholipids. In this work, the crystal structure of a Lys49-PLA2 homologue from Bothrops brazili (MTX-II) was solved in two conformational states: (a) native, with Lys49 singly coordinated by the backbone oxygen atom of Val31 and (b) complexed with tetraethylene glycol (TTEG). Interestingly, the TTEG molecule was observed in two different coordination cages depending on the orientation of the nominal calcium-binding loop and of the residue Lys49. These structural observations indicate a direct role for the residue Lys49 in the functioning of a catalytically inactive PLA2 homologue suggesting a contribution of the active site-like region in the expression of pharmacological effects such as myotoxicity and edema formation. Despite the several crystal structures of Lys49-PLA2 homologues already determined, their biological assembly remains controversial with two possible conformations. The extended dimer with the hydrophobic channel exposed to the solvent and the compact dimer in which the active site-like region is occluded by the dimeric interface. In the MTX-II crystal packing analysis was found only the extended dimer as a possible stable quaternary arrangement. © 2012 Elsevier B.V.
Resumo:
Understanding the biological activity profile of the snake venom components is fundamental for improving the treatment of snakebite envenomings and may also contribute for the development of new potential therapeutic agents. In this work, we tested the effects of BthTX-I, a Lys49 PLA2 homologue from the Bothrops jararacussu snake venom. While this toxin induces conspicuous myonecrosis by a catalytically independent mechanism, a series of in vitro studies support the hypothesis that BthTX-I might also exert a neuromuscular blocking activity due to its ability to alter the integrity of muscle cell membranes. To gain insight into the mechanisms of this inhibitory neuromuscular effect, for the first time, the influence of BthTX-I on nerve-evoked ACh release was directly quantified by radiochemical and real-time video-microscopy methods. Our results show that the neuromuscular blockade produced by in vitro exposure to BthTX-I (1 μM) results from the summation of both pre- and postsynaptic effects. Modifications affecting the presynaptic apparatus were revealed by the significant reduction of nerve-evoked [3H]-ACh release; real-time measurements of transmitter exocytosis using the FM4-64 fluorescent dye fully supported radiochemical data. The postsynaptic effect of BthTX-I was characterized by typical histological alterations in the architecture of skeletal muscle fibers, increase in the outflow of the intracellular lactate dehydrogenase enzyme and progressive depolarization of the muscle resting membrane potential. In conclusion, these findings suggest that the neuromuscular blockade produced by BthTX-I results from transient depolarization of skeletal muscle fibers, consequent to its general membrane-destabilizing effect, and subsequent decrease of evoked ACh release from motor nerve terminals. © 2012 Elsevier Ltd.
Resumo:
The mortality caused by snakebites is more damaging than many tropical diseases, such as dengue haemorrhagic fever, cholera, leishmaniasis, schistosomiasis and Chagas disease. For this reason, snakebite envenoming adversely affects health services of tropical and subtropical countries and is recognized as a neglected disease by the World Health Organization. One of the main components of snake venoms is the Lys49-phospholipases A2, which is catalytically inactive but possesses other toxic and pharmacological activities. Preliminary studies with MjTX-I from Bothrops moojeni snake venom revealed intriguing new structural and functional characteristics compared to other bothropic Lys49-PLA2s. We present in this article a comprehensive study with MjTX-I using several techniques, including crystallography, small angle X-ray scattering, analytical size-exclusion chromatography, dynamic light scattering, myographic studies, bioinformatics and molecular phylogenetic analyses.Based in all these experiments we demonstrated that MjTX-I is probably a unique Lys49-PLA2, which may adopt different oligomeric forms depending on the physical-chemical environment. Furthermore, we showed that its myotoxic activity is dramatically low compared to other Lys49-PLA2s, probably due to the novel oligomeric conformations and important mutations in the C-terminal region of the protein. The phylogenetic analysis also showed that this toxin is clearly distinct from other bothropic Lys49-PLA2s, in conformity with the peculiar oligomeric characteristics of MjTX-I and possible emergence of new functionalities inresponse to environmental changes and adaptation to new preys. © 2013 Salvador et al.