912 resultados para SILICATE CLAY NANOCOMPOSITES
Resumo:
Fire investigation is a challenging area for the forensic investigator. The aim of this work was to use spectral changes to paint samples to estimate the temperatures to which a paint has been heated. Five paint samples (one clay paint, two car paints, one metallic paint, and one matt emulsion) have been fully characterized by a combination of attenuated total reflectance Fourier transform infrared (ATR-IR), Raman, X-ray fluorescence spectroscopy and powder X-ray diffraction. The thermal decomposition of these paints has been investigated by means of ATR-IR and thermal gravimetric analysis. Clear temperature markers are observed in the ATR-IR spectra namely: loss of m(C = O) band, >300°C; appearance of water bands on cooling, >500°C; alterations to m(Si–O) bands due to dehydration of silicate clays, >700°C; diminution of m(CO3) and d(CO3) modes of CaCO3, >950°C. We suggest the possible use of portable ATR-IR for nondestructive, in situ analysis of paints.
Resumo:
Paleoenvironmental and paleoclimatic changes during the Valanginian carbon isotopic excursion (CIE) have been investigated in the western Tethys. For this purpose, bulk-rock and clay mineralogies, as well as phosphorus (P) contents were evaluated in a selection of five sections located in the Vocontian Basin (Angles, SE France; Alvier, E Switzerland; Malleval, E France), and the Lombardian Basin (Capriolo, N Italy; Breggia, S Switzerland). Within the CIE interval, bulk-rock and clay mineralogies are inferred to reflect mostly climate change. The onset of the CIE (Busnardoites campylotoxus ammonite Zone) is characterized by higher detrital index (DI: sum of the detrital minerals divided by calcite contents) values and the presence of kaolinite in their clay-mineral assemblages. In the late Valanginian (from the Saynoceras verrucosum Zone up to the end of the Valanginian), the samples show relatively variable DI and lower values or the absence of kaolinite. The variation in the mineralogical composition is interpreted as reflecting a change from a climate characterized by optimal weathering conditions associated with an increase in terrigenous input on the southern European margin during the CIE towards an overall unstable climate associated with drier conditions in the late Valanginian. This is contrasted by a dissymmetry (proximal vs distal) along the studied transect, the northern Tethyan margin being more sensitive to changes in continental input compared to the distal environments. P accumulation rates (PAR) present similar features. In the Vocontian basin, P content variations are associated with changes in terrigenous influx, whereas in the Lombardian basin (i.e. Capriolo and Breggia), PAR values are less well correlated. This is mainly because the deeper part of the Tethys was less sensitive to changes in continental inputs. The onset of the CIE (top of the B. campylotoxus Zone) records a general increase in PAR suggesting an increase in marine nutrient levels. This is linked to higher continental weathering rates and the enhanced influx of nutrients into the ocean. In the period corresponding to the shift itself, P contents show a dissymmetry between the Vocontian and Lombardian basins (proximal vs distal). For the sections of Malleval, Alvier and Angles, a decrease in P concentrations associated to a decrease in detrital input is observed. In Capriolo and Breggia, PAR show maximum values during the plateau, indicating a more complex interaction between different P sources. The time interval including the top of S. verrucosum Zone up to the end of the Valanginian is characterized by variable PAR values, suggesting variable nutrient influxes. These changes are in agreement with an evolution towards seasonally contrasted conditions in the late Valanginian.
Resumo:
This paper presents a study of the pozzolanic reaction kinetics between calcium hydroxide and a mixture of sugar cane bagasse with 20 and 30% of clay, burned at 800 and 1000 degrees C (SCBCA) by electrical conductivity measurements. A kinetic-diffusive model produced in previous studies by some of the authors was used. The model was fitted to the experimental data, which allowed the computation of the kinetic parameters of the pozzolanic reaction (reaction rate constant and free energy of activation) that rigorously characterised the pozzolanic activity of the materials. The results show that SCBCA demonstrated reactivity and good pozzolanic qualities in the range 800-1000 degrees C.
Resumo:
We present mid-infrared (mid-IR) spectra of the Compton-thick Seyfert 2 galaxy NGC 3281, obtained with the Thermal-Region Camera Spectrograph at the Gemini-South telescope. The spectra present a very deep silicate absorption at 9.7 mu m, and [S IV] 10.5 mu m and [Ne II] 12.7 mu m ionic lines, but no evidence of polycyclic aromatic hydrocarbon emission. We find that the nuclear optical extinction is in the range 24 mag <= A(V) <= 83 mag. A temperature T = 300 K was found for the blackbody dust continuum component of the unresolved 65 pc nucleus and the region at 130 pc SE, while the region at 130 pc NW reveals a colder temperature (200 K). We describe the nuclear spectrum of NGC 3281 using a clumpy torus model that suggests that the nucleus of this galaxy hosts a dusty toroidal structure. According to this model, the ratio between the inner and outer radius of the torus in NGC 3281 is R(0)/R(d) = 20, with 14 clouds in the equatorial radius with optical depth of tau(V) = 40 mag. We would be looking in the direction of the torus equatorial radius (i = 60 degrees), which has outer radius of R(0) similar to 11 pc. The column density is N(H) approximate to 1.2 x 10(24) cm(-2) and the iron K alpha equivalent width (approximate to 0.5-1.2 keV) is used to check the torus geometry. Our findings indicate that the X-ray absorbing column density, which classifies NGC 3281 as a Compton-thick source, may also be responsible for the absorption at 9.7 mu m providing strong evidence that the silicate dust responsible for this absorption can be located in the active galactic nucleus torus.
Resumo:
In this work, we report on the magnetic properties of nickel nanoparticles (NP) in a SiO(2)-C thin film matrix, prepared by a polymeric precursor method, with Ni content x in the 0-10 wt% range. Microstructural analyses of the films showed that the Ni NP are homogenously distributed in the SiO(2)-C matrix and have spherical shape with average diameter of similar to 10 nm. The magnetic properties reveal features of superparamagnetism with blocking temperatures T (B) similar to 10 K. The average diameter of the Ni NP, estimated from magnetization measurements, was found to be similar to 4 nm for the x = 3 wt% Ni sample, in excellent agreement with X-ray diffraction data. M versus H hysteresis loops indicated that the Ni NP are free from a surrounding oxide layer. We have also observed that coercivity (H (C)) develops appreciably below T (B), and follows the H (C) ae [1 - (T/T (B))(0.5)] relationship, a feature expected for randomly oriented and non-interacting nanoparticles. The extrapolation of H (C) to 0 K indicates that coercivity decreases with increasing x, suggesting that dipolar interactions may be relevant in films with x > 3 wt% Ni.
Resumo:
Ribbons of nominal composition (Pr(9.5)Fe(84.5)B(6))(0.96)Cr(0.01)(TiC)(0.03) were produced by arc-melting and melt-spinning the alloys on a Cu wheel. X-ray diffraction reveals two main phases, one based upon alpha-Fe and the other upon Pr(2)Fe(14)B. The ribbons show exchange spring behavior with H(c)=12.5 kOe and (BH)(max)= 13.6 MGOe when these two phases are well coupled. Transmission electron microscopy revealed that the coupled behavior is observed when the microstructure consists predominantly of alpha-Fe grains(diameter similar to 100 nm.) surrounded by hard material containing Pr(2)Fe(14)B. A first-order-reversal-curve (FORC) analysis was performed for both a well-coupled sample and a partially-coupled sample. The FORC diagrams show two strong peaks for both the partially-coupled sample and for the well coupled material. In both cases, the localization of the FORC probability suggests demagnetizing interactions between particles. Switching field distributions were calculated and are consistent with the sample microstructure. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
We show a simple strategy to obtain all efficient enzymatic broelectrochemical device, in which urease was immobilized oil electroactive nanostructured membranes (ENMs) made with polyaniline and silver nanoparticles (AgNP) stabilized in polyvinyl alcohol (PAni/PVA-AgNP). Fabrication of the modified electrodes comprised the chemical deposition of polyaniline followed by drop-coating of PVA-AgNP and urease, resulting in a final ITO/PAni/PVA-AgNP/urease electrode Configuration. For comparison. the electrochemical performance of ITO/PAni/urease electrodes (without Ag nanoparticles) was also studied. The performance of the modified electrodes toward Urea hydrolysis was investigated via amperometric measurements, revealing a fast increase in cathodic current with a well-defined peak upon addition of urea to the electrolytic solution. The cathodic currents for the ITO/PAni/PVA-AgNP urease electrodes were significantly higher than for the ITO/PAni/urease electrodes. The friendly environment provided by the ITO/PAni/PVA-AgNP electrode to the immobilized enzyme promoted efficient catalytic conversion of urea into ammonium and bicarbonate tons. Using the Michaelis-Menten kinetics equation, a K(M)(aPP) of 2.7 mmol L(-1) was obtained. indicating that the electrode architecture employed may be advantageous for fabrication of enzymatic devices with improved biocatalytic properties. Crown Copyright (C) 2009 Published by Elsevier B.V. All rights reserved.
Resumo:
Determinations of the volatile elements carbon, hydrogen, sulfur and nitrogen in many geological RM, performed with the LECO CHN and SC analysers, are presented. The method allowed the determination of S in concentrations from a few % m/m to 0.001% m/m or less, of C from % m/m to 0.01% m/m and of H from % m/m to 0.004% m/m. Accuracy was usually better than the XRF method (for S). All obtained values passed the Sutarno-Steger test, which establishes that vertical bar(mean(analysed) - mean(certified))vertical bar/ S(certified) < 2, for the cases with an appropriate number of determinations (n > 10 for each element). It was possible to perform routine determination of C, H and S with the instrumentation, coupled with the determination of major and minor elements in geological materials. Determination of nitrogen could also be performed on an exploratory basis, with improvements in the method dependent on the future availability of more reference materials with reliable composition of this element.
Resumo:
Since the early days, clays have been used for therapeutic purposes. Nowadays, they are used as active ingredients or as excipient in formulations for a variety of purposes. Despite their wide use, little information is available in literature on their content of trace elements and radionuclides. The purpose of this study was to determine the elements (As, Ba, Br, Cs, Co, Cr, Eu, Fe, Hf, Hg, La, Lu, Rb, Sb, Sc, Sm, Ta, Tb, Yb, Zn, and Zr) and the radionuclides ((238)U, (232)Th, (226)Ra, (228)Ra, (210)Pb and (40)K) in Brazilian clays as well as the health and radiological implications of the use of these clays in pharmaceutical formulations. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Three novel hybrid organic/inorganic materials were synthesized from 4-substituted (NO(2), Br, H) 1,8-naphthalene imide-N-propyltriethoxysilane by the sol-gel process. These materials were obtained as a xerogel and partially characterized. The ability to photosensitize the oxidation and degradation of tryptophan indole ring by these materials was studied through photophysical and photochemical techniques. Although the derivatives containing Br and NO(2) as substituent do not cause efficient tryptophan photodamage, the hybrid material obtained from 1,8-naphthalic anhydride is very efficient to promote tryptophan photooxidation. By using laser flash photolysis it was possible to verify the presence of naphthalene imide transient radical species. The presence of oxygen causes an increase of the yield of radical formation. These results suggest that the mechanism of photodegradation of tryptophan occurs by type I, i.e. the transient radical (TrpH(center dot+)) formed by the direct reaction of the triplet state of the naphthalene imide moiety with tryptophan. Thus a inorganic-organic hybrid material that can be used to promote the oxidation of biomolecules was obtained. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Vanadium pentoxide xerogels (VXG) incorporating meso(3- and 4-pyridyl)porphyrin cobalt(III) species coordinated to four [Ru(bipy)(2)Cl](+) complexes were employed as gas sensing materials capable of detecting small amounts of water in commercial ethanol and fuel supplies. According to their X-ray diffraction data, the original VXG lamellar framework was maintained in the nanocomposite material, but the interlamellar distance increased from 11.7 to 15.2 angstrom, reflecting the intercalation of the porphyrin species into the vanadium pentoxide matrix. The films generated by direct deposition of the nanocomposite aqueous suspensions exhibited good electrical and electrochemical performance for application in resistive sensors. The analysis of water in ethanol and fuels was carried out successfully using an especially designed electric setup incorporating a laminar gas flow chamber and interdigitated gold electrodes coated with the nanocomposites. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
In this work, the electronic and structural characterization of polyaniline (PANI) formed in cavities of zeolites Y (ZY) and Mordenite (MOR) and montmorillonite (MMT) clay having Cu(II) as oxidant agent are presented. The formation of PANI and its structure is analyzed by Resonance Raman, UV-Vis-NIR, FT-IR and N K XANES techniques. In all cases the structure of PANT formed is different from the ""free"" polymer. The presence of azo bonds linked to phenazine-like rings are observed only for PANI-MMT composites, independent of the kind of oxidant agent employed in the synthesis. The presence of Cu(II) ions leads to the formation of Phenosafranine-like rings. The presence of these phenazine-like rings in the structure of confined PANT chains can also contribute to the enhancement of the thermal stability observed for all composites. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Highly dispersed nanocomposites of polyaniline(PANI) and oxidized single wall carbon nanotubes(SWNTs) have been prepared using dodecylbenzenesulfonic acid as dispersant. The materials were characterized via resonance Raman and electronic absorption spectroscopies. The behavior of the composites as a function of the applied potential was also investigated using in situ Raman electrochemical measurements. The results obtained at E(laser) = 1.17 eV suggest that a charge-transfer process occur between PANI and semiconducting nanotubes for samples where the metallic tubes are previously oxidized. The spectroelectrochemical data show that the presence of SWNTs prevents the oxidation of PANI rings. Copyright (C) 2010 John Wiley & Sons, Ltd.
Resumo:
The surface of ramie cellulose whiskers has been chemically modified by grafting organic acid chlorides presenting different lengths of the aliphatic chain by an esterification reaction. The occurrence of the chemical modification was evaluated by FTIR and X-ray photoelectron spectroscopies, elemental analysis and contact angle measurements. The crystallinity of the particles was not altered by the chain grafting, but it was shown that covalently grafted chains were able to crystallize at the cellulose surface when using C18. Both unmodified and functionalized nanoparticles were extruded with low density polyethylene to prepare nanocomposite materials. The homogeneity of the ensuing nanocomposites was found to increase with the length of the grafted chains. The thermomechanical properties of processed nanocomposites were studied by differential scanning calorimetry (DSC), dynamical mechanical analysis (DMA) and tensile tests. A significant improvement in terms of elongation at break was observed when sufficiently long chains were grafted on the surface of the nanoparticles. It was ascribed to improved dispersion of the nanoparticles within the LDPE matrix. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
In this paper we construct and analyze a growth model with the following three ingredients. (i) Technological progress is embodied. (ii) The production function of a firm is such that the firm makes both technology upgrade as well as capital and labor decisions. (iii) The firm’s production technology is putty-clay. We assume that there are disincentives to the accumulation of capital, resulting in a divergence between the social and the private cost of investment. We solve a single firm’s problem in this environment. Then we determine general equilibrium prices of capital goods of different vintages. Using these prices we aggregate firms’ decisions and construct the theoretical analogues of National Income statistics. This generates a relationship between disincentives and per capita incomes. We analyze this relationship and show the quantitative and qualitative roles of embodiment and putty-clay. We also show how the model is taken to data, quantified and used to determine to what extent income gaps across countries can be attributed to disincentives.