880 resultados para SILICA-COATED CDTE


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents the instrumentation and control architecture for a laboratory based two-stage 4-bed silica gel + water adsorption system. The system consists of primarily two fluids: refrigerant (water vapour) and heat transfer fluid (water) flowing through various components. Heat input to the system is simulated using multiple heaters and ambient air is used as the heat sink. The laboratory setup incorporates a real time National Instruments (NI) controller to control several digital and analog valves, heaters, pumps and fans along with simultaneous data acquisition from various flow, pressure and temperature sensors. The paper also presents in detail the various automated and manual tasks required for successful operation of the system. Finally the system pressure and temperature dynamics are reported and its performance evaluated for various cycle times. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report a simple and highly sensitive methodology for the room temperature NO2 gas sensing using reduced graphene oxide (RGO) coated clad etched fiber Bragg grating (eFBG). A significant shift (>10 pm) is observed in the reflected Bragg wavelength (lambda(B)) upon exposing RGO coated on the surface of eFBG to the NO2 gas molecules of concentration 0.5 ppm. The shift in Bragg wavelength is due to the change in the refractive index of RGO by charge transfer from the adsorbing NO2 molecules. The range of NO2 concentration is tested from 0.5 ppm to 3 ppm and the estimated time taken for 50% increase in Delta lambda(B) ranges from 20 min (for 0.5 ppm) to 6 min (for 3 ppm). (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An innovative technique to obtain high-surface-area mesostructured carbon (2545m(2)g(-1)) with significant microporosity uses Teflon as the silica template removal agent. This method not only shortens synthesis time by combining silica removal and carbonization in a single step, but also assists in ultrafast removal of the template (in 10min) with complete elimination of toxic HF usage. The obtained carbon material (JNC-1) displays excellent CO2 capture ability (ca. 26.2wt% at 0 degrees C under 0.88bar CO2 pressure), which is twice that of CMK-3 obtained by the HF etching method (13.0wt%). JNC-1 demonstrated higher H-2 adsorption capacity (2.8wt%) compared to CMK-3 (1.2wt%) at -196 degrees C under 1.0bar H-2 pressure. The bimodal pore architecture of JNC-1 led to superior supercapacitor performance, with a specific capacitance of 292Fg(-1) and 182Fg(-1) at a drain rate of 1Ag(-1) and 50Ag(-1), respectively, in 1m H2SO4 compared to CMK-3 and activated carbon.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article presents a theoretical analysis of heat and mass transfer in a silica gel + water adsorption process using scaling principles. A two-dimensional columnar packed adsorber domain is chosen for the study, with side and bottom walls cooled and vapour inlet from the top. The adsorption process is initiated from the cold walls with a temperature jump of 15 K, whereas the water vapour supply is maintained at a constant inlet pressure of 1 kPa. The first part of the study is dedicated to deriving relevant scales for the adsorption process by an order of magnitude analysis of energy, continuity and momentum equations. In the latter part, the derived scales are compared with the outcome of numerical studies performed for various domain widths and aspect ratio of bed. A good correlation between scaling and simulation results is observed, thereby validating the scaling approach. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An innovative technique to obtain high-surface-area mesostructured carbon (2545m(2)g(-1)) with significant microporosity uses Teflon as the silica template removal agent. This method not only shortens synthesis time by combining silica removal and carbonization in a single step, but also assists in ultrafast removal of the template (in 10min) with complete elimination of toxic HF usage. The obtained carbon material (JNC-1) displays excellent CO2 capture ability (ca. 26.2wt% at 0 degrees C under 0.88bar CO2 pressure), which is twice that of CMK-3 obtained by the HF etching method (13.0wt%). JNC-1 demonstrated higher H-2 adsorption capacity (2.8wt%) compared to CMK-3 (1.2wt%) at -196 degrees C under 1.0bar H-2 pressure. The bimodal pore architecture of JNC-1 led to superior supercapacitor performance, with a specific capacitance of 292Fg(-1) and 182Fg(-1) at a drain rate of 1Ag(-1) and 50Ag(-1), respectively, in 1m H2SO4 compared to CMK-3 and activated carbon.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate all inorganic, robust, cost-effective, spin-coated, two-terminal capacitive memory metal-oxide nanoparticle-oxide-semiconductor devices with cadmium telluride nanoparticles sandwiched between aluminum oxide phosphate layers to form the dielectric memory stack. Using a novel high-speed circuit to decouple reading and writing, experimentally measured memory windows, programming voltages, retention times, and endurance are comparable with or better than the two-terminal memory devices realized using other fabrication techniques.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the tunable dielectric constant of titania films with low leakage current density. Titanium dioxide (TiO2) films of three different thicknesses (36, 63 and 91 nm) were deposited by the consecutive steps of solution preparation, spin-coating, drying, and firing at different temperatures. The problem of poor adhesion between Si substrate and TiO2 insulating layer was resolved by using the plasma activation process. The surface roughness was found to increase with increasing thickness and annealing temperature. The electrical investigation was carried out using metal-oxide-semiconductor structure. The flat band voltage (V-FB), oxide trapped charge (Q(ot)), dielectric constant (kappa) and equivalent oxide thicknesses are calculated from capacitance-voltage (C-V) curves. The C-V characteristics indicate a thickness dependent dielectric constant. The dielectric constant increases from 31 to 78 as thickness increases from 36 to 91 nm. In addition to that the dielectric constant was found to be annealing temperature and frequency dependent. The films having thickness 91 nm and annealed at 600 A degrees C shows the low leakage current density. Our study provides a broad insight of the processing parameters towards the use of titania as high-kappa insulating layer, which might be useful in Si and polymer based flexible devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The transient thermal stress problem of an inner-surface-coated hollow cylinder with multiple pre-existing surface cracks contained in the coating is considered. The transient temperature, induced thermal stress, and the crack tip stress intensity factor (SIF) are calculated for the cylinder via finite element method (FEM), which is exposed to convective cooling from the inner surface. As an example, the material pair of a chromium coating and an underlying steel substrate 30CrNi2MoVA is particularly evaluated. Numerical results are obtained for the stress intensity factors as a function of normalized quantities such as time, crack length, convection severity, material constants and crack spacing. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

首次在涂敷PEI的玻璃表面上制备了癸酸及全氟癸酸的单分子层膜。研究了成膜机理及摩擦特性。结果表明。脱水剂DCCD促进了癸酸或全氟癸酸与PEI酞胺化的反应。导致两种羧酸在PEI表面产生了靠化学键(酞胺键)连接的稳定的单分子层膜,摩擦、磨损实验表明。单分子层有机膜的摩擦特性受膜的组成、表面能及有序性和堆积密度的重要影响。表面能越低,有序性和堆积密度越高。摩擦系数越低。与碳氢化合物相比。碳氟化合物形成的有序膜具有更高的强度和抗磨性能。

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a good alternative method to improve the tribological properties of polymer films by chemisorbing a long-chain monolayer on the functional polymer surface. Thus, a novel self-assembled monolayer is successfully prepared on a silicon substrate coated with amino-group-containing polyethyleneimine (PEI) by the chemical adsorption of stearic acid (STA) molecules. The formation and structure of the STA-PEI film are characterized by means of contact-angle measurement and ellipsometric thickness measurement, and of Fourier transformation infrared spectrometric and atomic force microscopic analyses. The micro- and macro-tribological properties of the STA-PEI film are investigated on an atomic force microscope (AFM) and a unidirectional tribometer, respectively. It has been found that the STA monolayer about 2.1-nm thick is produced on the PEI coating by the chemical reaction between the amino groups in the PEI and the carboxyl group in the STA molecules to form a covalent amide bond in the presence of N,N'-dicyclohexylcarbodiimide (DCCD) as a dehydrating regent. By introducing the STA monolayer, the hydrophilic PEI polymer surface becomes hydrophobic with a water contact angle to be about 105degrees. Study of the time dependence of the film formation shows that the adsorption of PEI is fast, whereas at least 24 h is needed to generate the saturated STA monolayer. Whereas the PEI coating has relatively high adhesion, friction, and poor anti-wear ability, the STA-PEI film possesses good adhesive resistance and high load-carrying capacity and anti-wear ability, which could be attributed to the chemical structure of the STA-PEI thin film. It is assumed that the hydrogen bonds between the molecules of the STA-PEI film act to stabilize the film and can be restored after breaking during sliding. Thus, the self-assembled STA-PEI thin film might find promising application in the lubrication of micro-electromechanical systems (MEMS).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, mechanical properties of silica-filled epoxy resin are tested. The tests show that at elevated temperatures, the material’s properties (e.g. yield stress, flow stress, etc.) vary immonotonically with filler volume fraction. Nanoindentation test results suggest that an interface region, stronger than the matrix, is formed in the materials. The formation of the interface has positive effects on the yield strengths of materials. The addition of particles in the matrix produces a large disturbance in stress distribution, leading to stress concentration in the matrix. The stress concentration has negative effects on the yield strengths of materials. The calculation demonstrates that the maximum stress in samples varies immonotonically with particulate concentration. So, the immonotonic variation of mechanical behavior of materials may be rooted in the contradictory effects of the interface region and the stress concentration caused by particulate addition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In 0.1 mol/l KH2PO4–Na2HPO4 (pH 7.80) buffer solution, the potential of zero charge (PZC) and the open circuit potential of gold-coated silicon were determined to be about −0.6 and +0.10 V (vs SCE), respectively. The open circuit potential was higher than the PZC, which indicated that the surface of the gold-coated electrode had a positive charge. The ellipsometry experiment showed that the adsorption of fibrinogen onto the gold-coated silicon wafer surface arrived at a saturated state when the adsorption time exceeded 50 min. The percentage of surface without adsorbed protein, θ, was about 63%. This means that the proportion of surface actually occupied by fibrinogen was only about 37% after the adsorption arrived at saturation. The solution/protein capacitance value was determined in an impulse state around −0.59 V (vs SCE) and was stable (4.2×10−5 F) at other potentials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The slurry erosion-corrosion behaviour of aluminium in aqueous silica slurries containing 0.5 M NaCl, acetic acid and 0.1 M Na2CO3 at open circuit has been investigated using a modified slurry erosion rig. The erosion rates of aluminium in the NaCl and acetic acid slurries were much higher than those in an aqueous slurry without electrolyte additives even though the pure corrosion component was very small. Eroded specimens were examined by scanning electron and optical microscopy. In pure aqueous slurry erosion, the basic mechanism leading to mass loss was the ductile fracture of flakes formed on the eroded surface. In corrosive slurries, however, the mass loss was enhanced by cracking of the flakes induced by stress and corrosion. © 1995.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Anodic bonding with thin films of metal or alloy as an intermediate layer, finds increasing applications in micro/nanoelectromechanical systems. At the bonding temperature of 350 degrees C, voltage of 400 V, and 30 min duration, the anodic bonding is completed between Pyrex glass and crystalline silicon coated with an aluminum thin film with a thickness comprised between 50 and 230 nm. Sodium-depleted layers and dendritic nanostructures were observed in Pyrex 7740 glass adjacent to the bonding interface. The sodium depletion width does not increase remarkably with the thickness of aluminum film. The dendritic nanostructures result from aluminum diffusion into the Pyrex glass. This experimental research is expected to enhance the understanding of how the depletion layer and dendritic nanostructures affect the quality of anodic bonding. (C) 2007 Elsevier B.V. All rights reserved.