977 resultados para SHTB impact experiments


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Future scenarios for the oceans project combined developments of CO2 accumulation and global warming and their impact on marine ecosystems. The synergistic impact of both factors was addressed by studying the effect of elevated CO2 concentrations on thermal tolerance of the cold-eurythermal spider crab Hyas araneus from the population around Helgoland. Here ambient temperatures characterize the southernmost distribution limit of this species. Animals were exposed to present day normocapnia (380 ppm CO2), CO2 levels expected towards 2100 (710 ppm) and beyond (3000 ppm). Heart rate and haemolymph PO2 (PeO2) were measured during progressive short term cooling from 10 to 0°C and during warming from 10 to 25°C. An increase of PeO2 occurred during cooling, the highest values being reached at 0°C under all three CO2 levels. Heart rate increased during warming until a critical temperature (Tc) was reached. The putative Tc under normocapnia was presumably >25°C, from where it fell to 23.5°C under 710 ppm and then 21.1°C under 3000 ppm. At the same time, thermal sensitivity, as seen in the Q10 values of heart rate, rose with increasing CO2concentration in the warmth. Our results suggest a narrowing of the thermal window of Hyas araneus under moderate increases in CO2 levels by exacerbation of the heat or cold induced oxygen and capacity limitation of thermal tolerance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Anthropogenic CO2 emissions are acidifying the world's oceans. A growing body of evidence is showing that ocean acidification impacts growth and developmental rates of marine invertebrates. Here we test the impact of elevated seawater pCO2 (129 Pa, 1271 µatm) on early development, larval metabolic and feeding rates in a marine model organism, the sea urchin Strongylocentrotus purpuratus. Growth and development was assessed by measuring total body length, body rod length, postoral rod length and posterolateral rod length. Comparing these parameters between treatments suggests that larvae suffer from a developmental delay (by ca. 8%) rather than from the previously postulated reductions in size at comparable developmental stages. Further, we found maximum increases in respiration rates of + 100 % under elevated pCO2, while body length corrected feeding rates did not differ between larvae from both treatments. Calculating scope for growth illustrates that larvae raised under high pCO2 spent an average of 39 to 45% of the available energy for somatic growth, while control larvae could allocate between 78 and 80% of the available energy into growth processes. Our results highlight the importance of defining a standard frame of reference when comparing a given parameter between treatments, as observed differences can be easily due to comparison of different larval ages with their specific set of biological characters.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As a consequence of anthropogenic CO2 emissions, oceans are becoming more acidic, a phenomenon known as ocean acidification. Many marine species predicted to be sensitive to this stressor are photosymbiotic, including corals and foraminifera. However, the direct impact of ocean acidification on the relationship between the photosynthetic and nonphotosynthetic organism remains unclear and is complicated by other physiological processes known to be sensitive to ocean acidification (e.g. calcification and feeding). We have studied the impact of extreme pH decrease/pCO2 increase on the complete life cycle of the photosymbiotic, non-calcifying and pure autotrophic acoel worm, Symsagittifera roscoffensis. Our results show that this species is resistant to high pCO2 with no negative or even positive effects on fitness (survival, growth, fertility) and/or photosymbiotic relationship till pCO2 up to 54 K µatm. Some sub-lethal bleaching is only observed at pCO2 up to 270 K µatm when seawater is saturated by CO2. This indicates that photosymbiosis can be resistant to high pCO2. If such a finding would be confirmed in other photosymbiotic species, we could then hypothesize that negative impact of high pCO2 observed on other photosymbiotic species such as corals and foraminifera could occur through indirect impacts at other levels (calcification, feeding).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Sr/Ca of aragonitic coral skeletons is a commonly used palaeothermometer. However skeletal Sr/Ca is typically dominated by weekly-monthly oscillations which do not reflect temperature or seawater composition and the origins of which are currently unknown. To test the impact of transcellular Ca2+ transport processes on skeletal Sr/Ca, colonies of the branching coral, Pocillopora damicornis, were cultured in the presence of inhibitors of Ca-ATPase (ruthenium red) and Ca channels (verapamil hydrochloride). The photosynthesis, respiration and calcification rates of the colonies were monitored throughout the experiment. The skeleton deposited in the presence of the inhibitors was identified (by 42Ca spike) and analysed for Sr/Ca and Mg/Ca by secondary ion mass spectrometry. The Sr/Ca of the aragonite deposited in the presence of either of the inhibitors was not significantly different from that of the solvent (dimethyl sulfoxide) control, although the coral calcification rate was reduced by up to 66% and 73% in the ruthenium red and verapamil treatments, respectively. The typical precision (95% confidence limits) of mean Sr/Ca determinations within any treatment was <±1% and differences in skeletal Sr/Ca between treatments were correspondingly small. Either Ca-ATPase and Ca channels transport Sr2+ and Ca2+ in virtually the same ratio in which they are present in seawater or transcellular processes contribute little Ca2+ to the skeleton and most Ca is derived from seawater transported directly to the calcification site. Variations in the activities of Ca-ATPase and Ca-channels are not responsible for the weekly-monthly Sr/Ca oscillations observed in skeletal chronologies, assuming that the specificities of Ca transcellular transport processes are similar between coral genera.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cephalopods play a key role in many marine trophic networks and constitute alternative fisheries resources, especially given the ongoing decline in finfish stocks. Along the European coast, the eggs of the cuttlefish Sepia officinalis are characterized by an increasing permeability of the eggshell during development, which leads to selective accumulation of essential and non-essential elements in the embryo. Temperature and pH are two critical factors that affect the metabolism of marine organisms in the coastal shallow waters. In this study, we investigated the effects of pH and temperature through a crossed (3?2; pH 8.1 (pCO2, 400 ppm), 7.85 (900 ppm) and 7.6 (1400 ppm) at 16 and 19°C, respectively) laboratory experiment. Seawater pH showed a strong effect on the egg weight and non-significant impact on the weight of hatchlings at the end of development implying an egg swelling process and embryo growth disturbances. The lower the seawater pH, the more 110 mAg was accumulated in the tissues of hatchlings. The 109Cd concentration factor (CF) decreased with decreasing pH and 65Zn CF reached maximal values pH 7.85, independently of temperature. Our results suggest that pH and temperature affected both the permeability properties of the eggshell and embryonic metabolism. To the best of our knowledge, this is one of the first studies on the consequences of ocean acidification and ocean warming on metal uptake in marine organisms, and our results indicate the need to further evaluate the likely ecotoxicological impact of the global change on the early-life stages of the cuttlefish.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ocean acidification (OA) is predicted to play a major role in shaping species biogeography and marine biodiversity over the next century. We tested the effect of medium-term exposure to OA (pH 8.00, 7.30 and 6.70 for 30 d) on acid-base balance in the decapod crab Necora puber-a species that is known to possess good extracellular buffering ability during short-term exposure to hypercapnic conditions. To determine if crabs undergo physiological trade-offs in order to buffer their haemolymph, we characterised a number of fundamental physiological functions, i.e. metabolic rate, tolerance to heat, carapace and chelae [Ca2+] and [Mg2+], haemolymph [Ca2+] and [Mg2+], and immune response in terms of lipid peroxidation. Necora puber was able to buffer changes to extracellular pH over 30 d exposure to hypercapnic water, with no evidence of net shell dissolution, thus demonstrating that HCO3- is actively taken up from the surrounding water. In addition, tolerance to heat, carapace mineralization, and aspects of immune response were not affected by hypercapnic conditions. In contrast, whole-animal O2uptake significantly decreased with hypercapnia, while significant increases in haemolymph [Ca2+] and [Mg2+] and chelae [Mg2+] were observed with hypercapnia. Our results confirm that most physiological functions in N. puber are resistant to low pH/hypercapnia over a longer period than previously investigated, although such resistance comes at the expenses of metabolic rates, haemolymph chemistry and chelae mineralization.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Evidence of increasing concentrations of dissolved carbon dioxide, especially in the surface ocean and its associated impacts on calcifying organisms, is accumulating. Among these organisms, benthic and planktonic foraminifera are responsible for a large amount of the globally precipitated calcium carbonate. Hence, their response to an acidifying ocean may have important consequences for future inorganic carbon cycling. To assess the sensitivity of benthic foraminifera to changing carbon dioxide levels and subsequent alteration in seawater carbonate chemistry, we cultured specimens of the shallow water species Ammonia tepida at two concentrations of atmospheric CO2 (230 and 1900 ppmv) and two temperatures (10 °C and 15 °C). Shell weights and elemental compositions were determined. Impact of high and low pCO2 on elemental composition are compared with results of a previous experiment were specimens were grown under ambient conditions (380 ppvm, no shell weight measurements of specimen grown under ambient conditions are, however, available). Results indicate that shell weights decrease with decreasing [CO3], although calcification was observed even in the presence of calcium carbonate under-saturation, and also decrease with increasing temperature. Thus both warming and ocean acidification may act to decrease shell weights in the future. Changes in [CO3] or total dissolved inorganic carbon do not affect the Mg distribution coefficient. On the contrary, Sr incorporation is enhanced under increasing [CO3]. Implications of these results for the paleoceanographic application of foraminifera are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A long-term (10 months) controlled experiment was conducted to test the impact of increased partial pressure of carbon dioxide (pCO2) on common calcifying coral reef organisms. The experiment was conducted in replicate continuous flow coral reef mesocosms flushed with unfiltered sea water from Kaneohe Bay, Oahu, Hawaii. Mesocosms were located in full sunlight and experienced diurnal and seasonal fluctuations in temperature and sea water chemistry characteristic of the adjacent reef flat. Treatment mesocosms were manipulated to simulate an increase in pCO2 to levels expected in this century [midday pCO2 levels exceeding control mesocosms by 365 ± 130 µatm (mean ± sd)]. Acidification had a profound impact on the development and growth of crustose coralline algae (CCA) populations. During the experiment, CCA developed 25% cover in the control mesocosms and only 4% in the acidified mesocosms, representing an 86% relative reduction. Free-living associations of CCA known as rhodoliths living in the control mesocosms grew at a rate of 0.6 g buoyant weight per year while those in the acidified experimental treatment decreased in weight at a rate of 0.9 g buoyant weight per year, representing a 250% difference. CCA play an important role in the growth and stabilization of carbonate reefs, so future changes of this magnitude could greatly impact coral reefs throughout the world. Coral calcification decreased between 15% and 20% under acidified conditions. Linear extension decreased by 14% under acidified conditions in one experiment. Larvae of the coral Pocillopora damicornis were able to recruit under the acidified conditions. In addition, there was no significant difference in production of gametes by the coral Montipora capitata after 6 months of exposure to the treatments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The impact of ocean acidification and increased water temperature on marine ecosystems, in particular those involving calcifying organisms, has been gradually recognised. We examined the individual and combined effects of increased pCO2 (180 ppmV CO2, 380 ppmV CO2 and 750 ppmV CO2 corresponding to past, present and future CO2 conditions, respectively) and temperature (13 °C and 18 °C) during the exponential growth phase of the coccolithophore E. huxleyi using batch culture experiments. We showed that cellular production rate of Particulate Organic Carbon (POC) increased from the present to the future CO2 treatments at 13 °C. A significant effect of pCO2 and of temperature on calcification was found, manifesting itself in a lower cellular production rate of Particulate Inorganic Carbon (PIC) as well as a lower PIC:POC ratio at future CO2 levels and at 18 °C. Coccosphere-sized particles showed a size reduction with both increasing temperature and CO2concentration. The influence of the different treatments on coccolith morphology was studied by categorizing SEM coccolith micrographs. The number of well-formed coccoliths decreased with increasing pCO2 while temperature did not have a significant impact on coccolith morphology. No interacting effects of pCO2 and temperature were observed on calcite production, coccolith morphology or on coccosphere size. Finally, our results suggest that ocean acidification might have a larger adverse impact on coccolithophorid calcification than surface water warming.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Increased carbon dioxide (CO2) concentration in the atmosphere will change the balance of the components of carbonate chemistry and reduce the pH at the ocean surface. Here, we report the effects of increased CO2 concentration on the early development of the sea urchins Hemicentrotus pulcherrimus and Echinometra mathaei. We examined the fertilization, early cleavage, and pluteus larval stage to evaluate the impact of elevated CO2 concentration on fertilization rate, cleavage rate, developmental speed, and pluteus larval morphology. Furthermore, we compared the effects of CO2 and HCl at the same pH in an attempt to elucidate any differences between the two. We found that fertilization rate, cleavage rate, developmental speed, and pluteus larval size all tended to decrease with increasing CO2 concentration. Furthermore, CO2-seawater had a more severe effect than HCl-seawater on the fertilization rate. By contrast, the effects on cleavage rate, developmental speed, and pluteus larval morphology were similar for CO2- and HCl-seawater. Our results suggest that both decreased pH and altered carbonate chemistry affect the early development and life history of marine animals, implying that increased seawater CO2 concentration will seriously alter marine ecosystems. The effects of CO2 itself on marine organisms therefore requires further clarification.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ocean acidification (OA) is believed to be a major threat for near-future marine ecosystems, and that the most sensitive organisms will be calcifying organisms and the free-living larval stages produced by most benthic marine species. In this respect, echinoderms are one of the taxa most at risk. Earlier research on the impact of near-future OA on echinoderm larval stages showed negative effects, such as a decreased growth rate, increased mortality, and developmental abnormalities. However, all the long-term studies were performed on planktotrophic larvae while alternative life-history strategies, such as nonfeeding lecithotrophy, were largely ignored. Here, we show that lecithotrophic echinoderm larvae and juveniles are positively impacted by ocean acidification. When cultured at low pH, larvae and juveniles of the sea star Crossaster papposus grow faster with no visible affects on survival or skeletogenesis. This suggests that in future oceans, lecithotrophic species may be better adapted to deal with the threat of OA compared with planktotrophic ones with potentially important consequences at the ecosystem level. For example, an increase in populations of the top predator C. papposus will likely have huge consequences for community structure. Our results also highlight the importance of taking varying life-history strategies into account when assessing the impacts of climate change, an approach that also provides insight into understanding the evolution of life-history strategies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present study investigates the combined effect of phosphorous limitation, elevated partial pressure of CO2 (pCO2) and temperature on a calcifying strain of Emiliania huxleyi (PML B92/11) by means of a fully controlled continuous culture facility. Two levels of phosphorous limitation were consecutively applied by renewal of culture media (N:P = 26) at dilution rates (D) of 0.3 d- and 0.1 d-1. CO2 and temperature conditions were 300, 550 and 900 µatm pCO2 at 14 °C and 900 µatm pCO2 at 18 °C. In general, the steady state cell density and particulate organic carbon (POC) production increased with pCO2, yielding significantly higher concentrations in cultures grown at 900 µatm pCO2 compared to 300 and 550 µatm pCO2. At 900 µatm pCO2, elevation of temperature as expected for a greenhouse ocean, further increased cell densities and POC concentrations. In contrast to POC concentration, C-quotas (pmol C cell-1) were similar at D = 0.3 d-1 in all cultures. At D = 0.1 d-1, a reduction of C-quotas by up to 15% was observed in the 900 µatm pCO2 at 18 °C culture. As a result of growth rate reduction, POC:PON:POP ratios deviated strongly from the Redfield ratio, primarily due to an increase in POC. Ratios of particulate inorganic and organic carbon (PIC:POC) ranged from 0.14 to 0.18 at D = 0.3 d-1, and from 0.11 to 0.17 at D = 0.1 d-1, with variations primarily induced by the changes in POC. At D = 0.1 d-1, cell volume was reduced by up to 22% in cultures grown at 900 µatm pCO2. Our results indicate that changes in pCO2, temperature and phosphorus supply affect cell density, POC concentration and size of E. huxleyi (PML B92/11) to varying degrees, and will likely impact bloom development as well as biogeochemical cycling in a greenhouse ocean.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Les concentrés de protéines de lait sont couramment utilisés comme ingrédients lors de la standardisation du lait de fromagerie. La concentration des protéines est généralement réalisée par ultrafiltration (UF) à l’aide de membranes polymériques ayant un seuil de coupure de 10 kDa, et ce, jusqu’à un facteur de concentration volumique de 3.5X. Dans l’optique d’améliorer l’efficience du procédé d’UF, l’étude avait pour but de caractériser l’impact du mode opératoire (pression transmembranaire constante (465 et 672 kPa) et flux constant) ainsi que la température (10°C et 50°C) sur la performance du système jusqu’à un facteur de concentration volumique de 3.6X. Le module de filtration à l’échelle pilote comprenait une membrane d’UF en polyéthersulfone de 10 kDa d’une surface de 2,04 m2. La performance du système a été caractérisée sur le flux de perméation, la sélectivité et la consommation énergétique totale. L’étude a montré que le flux de perméation était 1,9 fois plus élevé à une température de 50°C comparativement à 10°C lors de l’UF du lait. Le coefficient de rejet des protéines n’a pas été affecté significativement par la pression transmembranaire et la température (P< 0,05). L’effet de la température a été observé au niveau de la teneur en calcium, laquelle était plus élevée de 12% dans les rétentats générés à 50C. La consommation énergétique totale du système d’UF était plus élevée à 10C comparativement à 50C, représentant 0,32±0,02 et 0,26±0,04 kWh/kg rétentat respectivement. Les résultats montrent que le ratio d’efficience énergétique (rapport entre le flux de perméation et la consommation énergétique) optimal a été obtenu à faible pression transmembranaire constante et à 50C. L’approche développée dans le cadre de ce projet fournira des outils aux industriels laitiers pour améliorer l’éco-efficience de leurs procédés de séparation baromembranaire.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It was reported that prevention of acute portal overpressure in small-for-size livers by inflow modulation results in a better postoperative outcome. The aim is to investigate the impact of portal blood flow reduction by splenic artery ligation after major hepatectomy in a murine model. Forty-eight rats were subjected to an 85% hepatectomy or 85% hepatectomy and splenic artery ligation. Both groups were evaluated at 24, 48, 72 and 120 post-operative hours: liver function, regeneration and viability. All methods and experiments were carried out in accordance with Coimbra University guidelines. Splenic artery ligation produces viability increase after 24 h, induces a relative decrease in oxidative stress during the first 48 hours, allows antioxidant capacity increment after 24 h, which is reflected in a decrease of half-time normalized liver curve at 48 h and at 72 h and in an increase of mitotic index between 48 h and 72 h. Splenic artery ligation combined with 85% hepatectomy in a murine model, allows portal inflow modulation, promoting an increase in hepatocellular viability and regeneration, without impairing the function, probably by inducing a less marked elevation of oxidative stress at first 48 hours.