972 resultados para SEX STEROID-HORMONES
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Os parasitas do gênero Schistosoma situam-se entre os primeiros metazoários que desenvolveram sexos separados, determinado cromossomicamente no ovo fertilizado. Apesar da ocorrência de cromossomos sexuais específicos, as fêmeas de Schistosoma não atingem a maturidade somática e sexual sem a presença dos machos. Na verdade, um dos aspectos mais controversos e, ao mesmo tempo, mais fascinantes, envolvendo o desenvolvimento sexual das fêmeas está em se desvendar a natureza do estímulo que controla e mantém tal processo. Muito embora a natureza do estímulo (físico ou químico) seja motivo de controvérsia, concordam os mais diferentes autores que o acasalamento é um requisito indispensável para que ocorra a maturação e migração das fêmeas para o sítio definitivo de permanência no sistema vascular do hospedeiro vertebrado. Admite-se, ainda, que o estímulo não é espécie-específico e, em alguns casos, nem mesmo gênero-específico. Não obstante a existência de um número considerável de artigos dedicados ao tema, não há um consenso sobre o processo (ou processos) que controla(m) o encontro de machos e fêmeas no sistema circulatório do hospedeiro vertebrado, bem como está por ser determinada a natureza do estímulo, oriundo dos machos, que controla e mantém o desenvolvimento somático e sexual das fêmeas. Ao longo dos anos os machos de Schistosoma têm sido considerados, por vezes pejorativamente, os irmãos, os músculos ou o fígado das fêmeas. em síntese, resta saber se a natureza do estímulo responsável pelo desenvolvimento das fêmas envolve a transferência de hormônios, nutrientes, a mera estimulação tátil ou a combinação de dois ou mais desses fatores
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Sexual development prior to gonadal sex differentiation is regulated by various molecular mechanisms. In fish, a molecular sex-differentiation period has been identified in species for which sex can be ascertained prior to gonadal sex differentiation. The present study was designed to identify such a period in a species for which no genetic sex markers or monosex populations are available. Siberian sturgeons undergo a slow sex-differentiation process over several months, so gonad morphology and gene expression was tracked in fish from ages 3-27 months to identify the sex-differentiation period. The genes amh, sox9, and dmrt1 were selected as male gonad markers; cyp19a1a and foxl2a as female gonad markers; and cyp17a1 and ar as markers of steroid synthesis and steroid receptivity. Sex differentiation occurred at 8 months, and was preceded by a molecular sex-differentiation period at 3-4 months, at which time all of the genes except ar showed clear expression peaks. amh and sox9 expression seemed to be involved in male sexual development whereas dmrt1, a gene involved in testis development in metazoans, unexpectedly showed a pattern similar to those of the genes known to be involved in female gonadal sex differentiation (cyp19a1 and foxl2a). In conclusion, the timing of and gene candidates involved with molecular sex differentiation in the Siberian sturgeon were identified. Mol. Reprod. Dev. 2015. © 2015 Wiley Periodicals, Inc.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
We verified the relevance of measuring fecal glucocorticoid metabolites (FGM) to assess the stress response of the Syrian hamster. Male and female hamsters (n = 10 each) were submitted to an adrenocorticotropic hormone (ACTH) challenge test, whereas animals in the control group received 0.5 mL of sterile isotonic saline solution. All feces voided by each animal were collected at 4 h intervals from 24 h before (baseline) until 48 h after injections. FGM were quantified using an 11-oxoetiocholanolone enzyme immunoassay (EIA). Basal concentrations of FGM were almost four times higher in males than in females. Following ACTH administration, FGM levels started rising from 8 h onwards, reaching peak concentrations 20 or 28 h post injection in males and females, respectively. Despite the much higher absolute concentrations present in males, the relative increase (500%) in response to the ACTH stimulation was similar in both sexes. Sex differences in FGM levels are in accordance with results reported by others regarding the hamster adrenal physiology. The comparison of the adrenocortical response of males and females to an ACTH challenge provided new information about the amplitude and the timing of such a response and the excretion of glucocorticoids in both sexes. We demonstrated for the first time in the Syrian hamster that adrenocortical activity can be monitored in fecal samples in a noninvasive way. Our study provides a humane, practical, and noninvasive alternative to blood removal and therefore a powerful tool for stress-related studies in a species frequently used as an animal model in medical research.
Resumo:
Sex differences in Ca2+-dependent signalling and homoeostasis in the vasculature of hypertensive rats are well characterized. However, sex-related differences in SOCE (store-operated Ca2+ entry) have been minimally investigated. We hypothesized that vascular protection in females, compared with males, reflects decreased Ca2+ mobilization due to diminished activation of Orai 1/STIM 1 (stromal interaction molecule I). In addition, we investigated whether ovariectomy in females affects the activation of the Orai 1/STIM 1 pathway. Endothelium-denuded aortic rings from male and female SHRSP (stroke-prone spontaneously hypertensive rats) and WKY (Wistar Kyoto) rats and from OVX (ovariectomized) or sham female SHRSP and WKY rats were used to functionally evaluate Ca2+ influx-induced contractions. Compared with females, aorta from male SHRSP displayed: (i) increased contraction during the Ca2+-loading period; (ii) similar transient contraction during Ca2+ release from the intracellular stores; (iii) increased activation of STIM 1 and Orai1, as shown by the blockade of STIM 1 and Orai1 with neutralizing antibodies, which reversed the sex differences in contraction during the Ca2+-loading period; and (iv) increased expression of STIM I and Orai I. Additionally, we found that aortas from OVX-SHRSP showed increased contraction during the Ca2+-loading period and increased Orai1 expression, but no changes in the SR (sarcoplasmic reticulum)-buffering capacity or STIM I expression. These findings suggest that augmented activation of STIM 1/Orai 1 in aortas from male SHRSP represents a mechanism that contributes to sex-related impaired control of intracellular Ca2+ levels. Furthermore, female sex hormones may negatively modulate the STIM/Orai 1 pathway, contributing to vascular protection observed in female rats.
Resumo:
Background Duchenne muscular dystrophy (DMD) is a sex-linked inherited muscle disease characterized by a progressive loss in muscle strength and respiratory muscle involvement. After 12 years of age, lung function declines at a rate of 6 % to 10.7 % per year in patients with DMD. Steroid therapy has been proposed to delay the loss of motor function and also the respiratory involvement. Method In 21 patients with DMD aged between seven and 16 years, the forced vital capacity (FVC) and the forced expiratory volume in one second (FEV1) were evaluated at three different times during a period of two years. Results We observed in this period of evaluation the maintenance of the FVC and the FEV1 in this group of patients independently of chronological age, age at onset of steroid therapy, and walking capacity. Conclusion The steroid therapy has the potential to stabilize or delay the loss of lung function in DMD patients even if they are non-ambulant or older than 10 years, and in those in whom the medication was started after 7 years of age.
Resumo:
In beef cattle, the ability to conceive has been associated positively with size of the preovulatory follicle (POF). Proestrus estradiol and subsequent progesterone concentrations can regulate the endometrium to affect receptivity and fertility. The aim of the present study was to verify the effect of the size of the POF on luteal and endometrial gene expression during subsequent early diestrus in beef cattle. Eighty-three multiparous, nonlactating, presynchronized Nelore cows received a progesterone-releasing device and estradiol benzoate on Day–10 (D 10). Animals received cloprostenol (large follicle-large CL group; LF-LCL; N ¼ 42) or not (small follicle-small CL group; SF-SCL; N ¼ 41) on D 10. Progesterone devices were withdrawn and cloprostenol administered 42 to 60 hours (LF-LCL) or 30 to 36 hours (SF-SCL) before GnRH treatment (D0). Tissues were collected at slaughter on D7. The LF-LCL group had larger (P < 0.0001) POF (13.24 0.33 mm vs. 10.76 0.29 mm), greater (P < 0.0007) estradiol concentrations on D0 (2.94 0.28 pg/mL vs. 1.27 0.20 pg/mL), and greater (P < 0.01) progesterone concentrations on D7 (3.71 0.25 ng/mL vs. 2.62 0.26 ng/mL) compared with the SF-SCL group. Luteal gene expression of vascular endothelial growth factor A, kinase insert domain receptor, fms-related tyrosine kinase 1, steroidogenic acute regulatory protein, cytochrome P450, family 11, subfamily A, polypeptide 1, and hydroxy-delta-5-steroid dehydrogenase, 3 beta- and steroid deltaisomerase 7 was similar between groups. Endometrial gene expression of oxytocin receptor and peptidase inhibitor 3, skin-derived was reduced, and estrogen receptor alpha 2, aldo-keto reductase family 1, member C4, and lipoprotein lipase expression was increased in LF-LCL versus SF-SCL. Results support the hypothesis that the size of the POF alters the periovulatory endocrine milieu (i.e., proestrus estradiol and diestrus progesterone concentrations) and acts on the uterus to alter endometrial gene expression. It is proposed that the uterine environment and receptivity might also be modulated. Additionally, it is suggested that increased progesterone secretion of cows ovulating larger follicles is likely due to increased CL size rather than increased luteal expression of steroidogenic genes.
Resumo:
[EN] Leptin and osteocalcin play a role in the regulation of the fat-bone axis and may be altered by exercise. To determine whether osteocalcin reduces fat mass in humans fed ad libitum and if there is a sex dimorphism in the serum osteocalcin and leptin responses to strength training, we studied 43 male (age 23.9 2.4 yr, mean +/- SD) and 23 female physical education students (age 23.2 +/- 2.7 yr). Subjects were randomly assigned to two groups: training (TG) and control (CG). TG followed a strength combined with plyometric jumps training program during 9 wk, whereas the CG did not train. Physical fitness, body composition (dual-energy X-ray absorptiometry), and serum concentrations of hormones were determined pre- and posttraining. In the whole group of subjects (pretraining), the serum concentration of osteocalcin was positively correlated (r = 0.29-0.42, P < 0.05) with whole body and regional bone mineral content, lean mass, dynamic strength, and serum-free testosterone concentration (r = 0.32). However, osteocalcin was negatively correlated with leptin concentration (r = -0.37), fat mass (r = -0.31), and the percent body fat (r = -0.44). Both sexes experienced similar relative improvements in performance, lean mass (+4-5%), and whole body (+0.78%) and lumbar spine bone mineral content (+1.2-2%) with training. Serum osteocalcin concentration was increased after training by 45 and 27% in men and women, respectively (P < 0.05). Fat mass was not altered by training. Vastus lateralis type II MHC composition at the start of the training program predicted 25% of the osteocalcin increase after training. Serum leptin concentration was reduced with training in women. In summary, while the relative effects of strength training plus plyometric jumps in performance, muscle hypertrophy, and osteogenesis are similar in men and women, serum leptin concentration is reduced only in women. The osteocalcin response to strength training is, in part, modulated by the muscle phenotype (MHC isoform composition). Despite the increase in osteocalcin, fat mass was not reduced.
Resumo:
The purpose of our study is to investigate the effects of chronic estrogen administration on same-sex interactions during exposure to a social stressor and on oxytocin (OT) levels in prairie voles (Microtus orchrogaster). Estrogen and OT are two hormones known to be involved with social behavior and stress. Estogen is involved in the transcription of OT and its receptor. Because of this, it is generally thought that estrogen upregulates OT, but evidence to support this assumption is weak. While estrogen has been shown to either increase or decrease stress, OT has been shown to have stress-dampening properties. The goal of our experiment is to determine how estrogen affects OT levels as well as behavior in a social stressor in the voles. In addition, estrogen is required for many opposite-sex interactions, but little is known about its influence on same-sex interactions. We hypothesized that prairie voles receiving chronic estrogen injections would show an increase in OT levels in the brain and alter behavior in response to a social stressor called the resident-intruder test. To test this hypothesis, 73 female prairie voles were ovariectomized and then administered daily injections of estrogen (0.05 ¿g in peanut oil, s.c.) or vehicle for 8 days. On the final day of injections, half of the voles were given the resident-intruder test, a stressful 5 min interaction with a same-sex stranger. Their behavior was video-recorded. These animals were then sacrificed either 10 minutes or 60 minutes after the conclusion of the test. Half of the animals (no stress group) were not given the resident-intruder test. After sacrifice, trunk blood and brains were collected from the animals. Videos of the resident-intruder tests were analyzed for pro-social and aggressive behavior. Density of OT-activated neurons in the brain was measured via pixel count using immunohistochemistry. No differences were found in pro-social behavior (focal sniffing, p = 0.242; focal initiated sniffing p = 0.142; focal initiated sniffing/focal sniffing, p = 0.884) or aggressive behavior (total time fighting, p= 0.763; number of fights, p= 0.148; number of strikes, p = 0.714). No differences were found in activation of OT neurons in the brain, neither in the anterior paraventricular nucleus (PVN) (pixel count p= 0.358; % area that contains pixelated neurons p = 0.443) nor in the medial PVN (pixel count p= 0.999; % area that contains pixelated neurons p = 0.916). These results suggest that estrogen most likely does not directly upregulate OT and that estrogen does not alter behavior in stressful social interactions with a same-sex stranger. Estrogen may prepare the animal to respond to OT, instead of increasing the production of the peptide itself, suggesting that we need to shift the framework in which we consider estrogen and OT interactions.
Resumo:
The aim of this study was to explore the effect of long-term cross-sex hormonal treatment on cortical and trabecular bone mineral density and main biochemical parameters of bone metabolism in transsexuals. Twenty-four male-to-female (M-F) transsexuals and 15 female-to-male (F-M) transsexuals treated with either an antiandrogen in combination with an estrogen or parenteral testosterone were included in this cross-sectional study. BMD was measured by DXA at distal tibial diaphysis (TDIA) and epiphysis (TEPI), lumbar spine (LS), total hip (HIP) and subregions, and whole body (WB) and Z-scores determined for both the genetic and the phenotypic gender. Biochemical parameters of bone turnover, insulin-like growth factor-1 (IGF-1) and sex hormone levels were measured in all patients. M-F transsexuals were significantly older, taller and heavier than F-M transsexuals. They were treated by cross-sex hormones during a median of 12.5 years before inclusion. As compared with female age-matched controls, they showed a significantly higher median Z-score at TDIA and WB (1.7+/-1.0 and 1.8+/-1.1, P < 0.01) only. Based on the WHO definition, five (who did not comply with cross-sex hormone therapy) had osteoporosis. F-M transsexuals were treated by cross-sex hormones during a median of 7.6 years. They had significantly higher median Z-scores at TEPI, TDIA and WB compared with female age-matched controls (+0.9+/-0.2 SD, +1.0+/-0.4 SD and +1.4+/-0.3 SD, respectively, P < 0.0001 for all) and reached normal male levels except at TEPI. They had significantly higher testosterone and IGF-1 levels (p < 0.001) than M-F transsexuals. We conclude that in M-F transsexuals, BMD is preserved over a median of 12.5 years under antiandrogen and estrogen combination therapy, while in F-M transsexuals BMD is preserved or, at sites rich in cortical bone, is increased to normal male levels under a median of 7.6 years of androgen treatment in this cross sectional study. IGF-1 could play a role in the mediation of the effect of androgens on bone in F-M transsexuals.
Resumo:
Microbial exposures and sex hormones exert potent effects on autoimmune diseases, many of which are more prevalent in women. We demonstrate that early-life microbial exposures determine sex hormone levels and modify progression to autoimmunity in the nonobese diabetic (NOD) mouse model of type 1 diabetes (T1D). Colonization by commensal microbes elevated serum testosterone and protected NOD males from T1D. Transfer of gut microbiota from adult males to immature females altered the recipient's microbiota, resulting in elevated testosterone and metabolomic changes, reduced islet inflammation and autoantibody production, and robust T1D protection. These effects were dependent on androgen receptor activity. Thus, the commensal microbial community alters sex hormone levels and regulates autoimmune disease fate in individuals with high genetic risk.
Resumo:
The present study was designed to elucidate sex-related differences in two basic auditory and one basic visual aspect of sensory functioning, namely sensory discrimination of pitch, loudness, and brightness. Although these three aspects of sensory functioning are of vital importance in everyday life, little is known about whether men and women differ from each other in these sensory functions. Participants were 100 male and 100 female volunteers ranging in age from 18 to 30 years. Since sensory sensitivity may be positively related to individual levels of intelligence and musical experience, measures of psychometric intelligence and musical background were also obtained. Reliably better performance for men compared to women was found for pitch and loudness, but not for brightness discrimination. Furthermore, performance on loudness discrimination was positively related to psychometric intelligence, while pitch discrimination was positively related to both psychometric intelligence and levels of musical training. Additional regression analyses revealed that each of three predictor variables (sex, psychometric intelligence, and musical training) accounted for a statistically significant portion of unique variance in pitch discrimination. With regard to loudness discrimination, regression analysis yielded a statistically significant portion of unique variance for sex as a predictor variable, whereas psychometric intelligence just failed to reach statistical significance. The potential influence of sex hormones on sex-related differences in sensory functions is discussed.