1000 resultados para Síntese hidrotermal
Resumo:
This review aims at to the presentation and discussion of the principal aspects of the C-H activation by transition metals. Representative examples were selected from the recent literature to illustrate these principles beginning with somewhat simple examples and moving up to more complex ones. The synthetic potential of the C-H activation, as well as the potential advantages and disadvantages of the methodology are highlighted with relevant recent examples, along with brief insights on the mechanism aspects of these reactions.
Resumo:
The Copper-catalyzed azide-alkyne cycloaddition (CuAAC), often referred to as "click" reaction, has become a very popular reaction in the last years. It affords exclusively 1,4-disubstituted 1,2,3-triazoles and has been widely used to connect readily accessible building blocks containing various functional groups. The great success of this reaction is based on the fact that it is general, virtually quantitative and very robuste. The scope of this copper-catalyzed synthesis is extraordinary and the reaction has found numerous applications in many research fields, including biological chemistry and materials science. In this review, the main chemical aspects and applications of the "click" reaction in the synthesis of 1,2,3-triazoles are presented.
Resumo:
We describe herein the synthesis and characterization of the complexes KNiF3, [Ni(en)3]I2, [Ni(en)3]Cl2, [Ni(acac)2(H2O)2], [Ni(en)2(H2O)2]Cl2 and [Ni(NH3)6](BF4)2 (en = ethylenediamine, acac- = acetylacetonate) performed in the inorganic synthesis major course at the Chemistry Institute of UFRGS (Universidade Federal do Rio Grande do Sul). The compounds were characterized by infrared and electronic spectroscopy and the electrolytic conductivity was measured. The parameters 10Dq and B were obtained from the electronic spectra and the nefelauxetic and spectrochemical series were determined. The obtained spectrochemical series was F- < acac- < NH3 < en and the nefeulaxetic series was en < NH3 < acac- < F-.
Resumo:
A comparative study of a convergent and the linear synthetic pathway with respect to their relative greenish allowed the quantification of the advantages of the former with respect to atomic productivity as well as robustness. The calculations show that convergent pathways provide a decrease of costs together with a decrease of E factor and an increase of atomic economy which means that greenish is accompanied by an economic advantage. The influence of other features of the convergent pathways synthesis on the improvement of the synthesis greenish is discussed qualitatively.
Resumo:
Iodide potassium incorporated on mesoporous molecular sieves (SBA-15 and MCM-41) was used as heterogeneous catalysts in the transesterification of sunflower oil under different conditions of reaction time and ratio catalyst/oil (w/w). The results have showed that the system supported in SBA-15 has been more active than the supported in MCM-41, promoting a conversion to methyl esters of 84.98%.
Resumo:
One of the difficulties reported for the suspension polymerization is control the size and granulometry of beads. The purpose of this work was to evaluate the use of cellulose nanowhiskers and mesoporous silica as stabilizers to reduce the size and the particle distribution. To monitor polymerization process was used FTIR-ATR spectroscopy. The morphology was analyzed by scanning electron microscopy. The particle size distribution was characterised using a CILAS granulometer. Thermal stability was studied by thermogravimetric analysis. The results indicated that cellulose nanowhiskers may provide stabilization and increase the thermal stability of the beads in contrast to mesoporous silica.
Resumo:
We have around ninety chemical elements available in nature, which were produced mainly by nuclear reactions inside stars. The fusion reactions are the main synthesis process which generates the light and intermediate masses elements. The synthesis begins with the hydrogen burning reaching the region of iron mass nuclei. Heavier elements are synthesized by neutron capture processes, forming exotic nuclei with large neutron excess. These systems present characteristics very different from nuclei inside of stable atoms; they only occur in particular astrophysical environments or are produced artificially in special laboratory conditions. This work discusses some properties of the exotic nuclei and how they participate in the synthesis of elements.
Resumo:
The use of biopolymers for the development of oxygen carriers has been extensively investigated. In this work, three different ABA triblock copolymers were synthesized and used to encapsulate purified bovine hemoglobin, using a double emulsion technique. The effect of polymer composition, homogenization velocity, and addition of a surfactant, on the protein entrapment was evaluated. These copolymers, which have a hydrophilic block, achieved higher values of encapsulation efficiency than the corresponding homopolymers. The increase in homogenization strength also promoted an increase in encapsulation efficiency. Capsules formation occurred even in the absence of PVA.
Resumo:
Three samples of hydrotalcite-like materials (HTC) were synthesized and their structural characteristics were compared with two HTCs obtained commercially. Thermal analyses, FT-IR, PXRD and textural analyses were used to investigate the structural differences between commercial and synthetic samples. Particularly, the memory effect was observed at temperature higher than 600 ºC. The Rietveld refinements were obtained with expressive accuracy and the statistical parameters of goodness of fit are quite satisfactory. In conclusion, the procedures adopted in synthesis of HTC produced crystalline materials with high surface area materials.
Resumo:
In recent years, the introduction of the Green Chemistry concepts in undergraduate chemistry classes has been intensively pursued. In this regard, the two-step preparation of Epoxone (an organocatalyst developed by Shi & col.) from commercial D-fructose, through ketalization of vicinal diols followed by oxidation of a sterically congested secondary alcohol, involves important topics in Organic Chemistry and employs inexpensive and nontoxic reagents. The reactions are easy to perform and the products from both steps are readily obtained as crystalline solids after simple procedures, thus facilitating their chemical characterization.
Resumo:
Five monomers 5-[4-(5-cyano-4,5-dihydroisoxazol-3-yl)phenoxy]undecyl acrylate (7a); n-alkyl 3-{4-[5-(acryloyloxyundecyl)oxyphenyl]}-4,5-dihydroisoxazole-5-carboxylate (7b,c for n-butyl and n-hexyl, respectively); 3-{4-[5-(acryloyloxyundecyl) oxyphenyl]}-4,5-dihydroisoxazole-5-carboxylic acid (7d) and (1R,2S,5R)-2-isopropyl-5-methylcyclohexyl acrylate (9) and the corresponding copolymers 10a-d,11 and homopolymers 12 from 7a and 13 from 9 were designed and synthesized. Except for acrylate 9 which is derived from (-)-menthol, all of the monomers belong to the series containing the isoxazoline ring linked to the acrylate unit by a flexible spacer chain of eleven methylene units. They presented low glass temperature and despite birefringence behavior, these copolymers showed no mesomorphic properties.
Resumo:
The world's largest ethanol producer (USA) uses corn as feedstock. DDGS (distillers dried grains with solubles) is the main waste generated from this process (around 32 million t/year). DDGS samples were pyrolyzed at 1000 ºC in a furnace with controlled atmosphere. The effluent was channeled to a second furnace, in which catalyst substrates were placed. Chromatographic analysis was used to evaluate the gaseous effluents, showing that the catalyst reduced hydrocarbon emissions. The solid products formed were analyzed by SEM and TEM. Graphitic structures and carbon nanofibers, 50 µm in length and with diameters of 80-200 nm, were formed.
Resumo:
We describe the synthesis and evaluation of N-acylhydrazone compounds bearing different electron-donating groups in one of its aromatic rings, obtained using a four-step synthetic route. IC50 values against pathogenic fungi and bacteria were determined by serial microdilution. Compounds showed low activity against Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa. By contrast, a derivative with a meta-oriented electron-donating group showed significant activity (IC50) against Candida albicans (17 µM), C. krusei (34 µM) and C. tropicalis (17 µM). Results suggest this is a promising lead-compound for synthesis of potent antifungal agents.
Resumo:
This work describes the synthesis and characterization of two new compounds with ligand opy (N-(2-pyridyl)oxamate): the copper(II) precursor [Me4N]2[Cu(opy)2].5H2O and CoII CuII coordination polymer {[CoCu(opy)2]}n×4nH2O. This latter compound was obtained by reaction of [Me4N]2[Cu(opy)2].5H2O and CoCl2.6H2O in water. The heterobimetallic CoII CuII chain was characterized by elemental analysis, IR spectroscopy, thermogravimetry and magnetic measurements. Magnetic characterization revealed typical behavior of one-dimensional (1D) ferrimagnetic chain as shown in the curves of temperature (T) dependence of magnetic susceptibility (χM), in the form of χMT versus T, and dependence of magnetization (M) with applied field (H).
Resumo:
New semi-quantitative metrics for simple evaluation of global greenness of chemical reactions used in teaching laboratories, namely, the Green Circle (GC) and Green Matrix (GM), were developed. These metrics globally consider all Twelve Principles of Green Chemistry. To illustrate their construction, the greenness of several syntheses performed in the laboratory under different sets of conditions was assessed. The tools were validated by comparing the results with another metric, the Green Star (GS), developed in our previous study. Results showed these new metrics were useful for the intended purpose, having the advantage of being simpler than the GS.