966 resultados para Ruelle-Takens scenario
Resumo:
For a mobile robot to operate autonomously in real-world environments, it must have an effective control system and a navigation system capable of providing robust localization, path planning and path execution. In this paper we describe the work investigating synergies between mapping and control systems. We have integrated development of a control system for navigating mobile robots and a robot SLAM system. The control system is hybrid in nature and tightly coupled with the SLAM system; it uses a combination of high and low level deliberative and reactive control processes to perform obstacle avoidance, exploration, global navigation and recharging, and draws upon the map learning and localization capabilities of the SLAM system. The effectiveness of this hybrid, multi-level approach was evaluated in the context of a delivery robot scenario. Over a period of two weeks the robot performed 1143 delivery tasks to 11 different locations with only one delivery failure (from which it recovered), travelled a total distance of more than 40km, and recharged autonomously a total of 23 times. In this paper we describe the combined control and SLAM system and discuss insights gained from its successful application in a real-world context.
Resumo:
Real-world business processes are resource-intensive. In work environments human resources usually multitask, both human and non-human resources are typically shared between tasks, and multiple resources are sometimes necessary to undertake a single task. However, current Business Process Management Systems focus on task-resource allocation in terms of individual human resources only and lack support for a full spectrum of resource classes (e.g., human or non-human, application or non-application, individual or teamwork, schedulable or unschedulable) that could contribute to tasks within a business process. In this paper we develop a conceptual data model of resources that takes into account the various resource classes and their interactions. The resulting conceptual resource model is validated using a real-life healthcare scenario.
Resumo:
The rapid growth of mobile telephone use, satellite services, and now the wireless Internet and WLANs are generating tremendous changes in telecommunication and networking. As indoor wireless communications become more prevalent, modeling indoor radio wave propagation in populated environments is a topic of significant interest. Wireless MIMO communication exploits phenomena such as multipath propagation to increase data throughput and range, or reduce bit error rates, rather than attempting to eliminate effects of multipath propagation as traditional SISO communication systems seek to do. The MIMO approach can yield significant gains for both link and network capacities, with no additional transmitting power or bandwidth consumption when compared to conventional single-array diversity methods. When MIMO and OFDM systems are combined and deployed in a suitable rich scattering environment such as indoors, a significant capacity gain can be observed due to the assurance of multipath propagation. Channel variations can occur as a result of movement of personnel, industrial machinery, vehicles and other equipment moving within the indoor environment. The time-varying effects on the propagation channel in populated indoor environments depend on the different pedestrian traffic conditions and the particular type of environment considered. A systematic measurement campaign to study pedestrian movement effects in indoor MIMO-OFDM channels has not yet been fully undertaken. Measuring channel variations caused by the relative positioning of pedestrians is essential in the study of indoor MIMO-OFDM broadband wireless networks. Theoretically, due to high multipath scattering, an increase in MIMO-OFDM channel capacity is expected when pedestrians are present. However, measurements indicate that some reductions in channel capacity could be observed as the number of pedestrians approaches 10 due to a reduction in multipath conditions as more human bodies absorb the wireless signals. This dissertation presents a systematic characterization of the effects of pedestrians in indoor MIMO-OFDM channels. Measurement results, using the MIMO-OFDM channel sounder developed at the CSIRO ICT Centre, have been validated by a customized Geometric Optics-based ray tracing simulation. Based on measured and simulated MIMO-OFDM channel capacity and MIMO-OFDM capacity dynamic range, an improved deterministic model for MIMO-OFDM channels in indoor populated environments is presented. The model can be used for the design and analysis of future WLAN to be deployed in indoor environments. The results obtained show that, in both Fixed SNR and Fixed Tx for deterministic condition, the channel capacity dynamic range rose with the number of pedestrians as well as with the number of antenna combinations. In random scenarios with 10 pedestrians, an increment in channel capacity of up to 0.89 bits/sec/Hz in Fixed SNR and up to 1.52 bits/sec/Hz in Fixed Tx has been recorded compared to the one pedestrian scenario. In addition, from the results a maximum increase in average channel capacity of 49% has been measured while 4 antenna elements are used, compared with 2 antenna elements. The highest measured average capacity, 11.75 bits/sec/Hz, corresponds to the 4x4 array with 10 pedestrians moving randomly. Moreover, Additionally, the spread between the highest and lowest value of the the dynamic range is larger for Fixed Tx, predicted 5.5 bits/sec/Hz and measured 1.5 bits/sec/Hz, in comparison with Fixed SNR criteria, predicted 1.5 bits/sec/Hz and measured 0.7 bits/sec/Hz. This has been confirmed by both measurements and simulations ranging from 1 to 5, 7 and 10 pedestrians.
Resumo:
Purpose–The aims of this paper are to demonstrate the application of Sen’s theory of well-being, the capability approach; to conceptualise the state of transportation disadvantage; and to underpin a theoretical sounds indicator selection process. Design/methodology/approach–This paper reviews and examines various measurement approaches of transportation disadvantage in order to select indicators and develop an innovative framework of urban transportation disadvantage. Originality/value–The paper provides further understanding of the state of transportation disadvantage from the capability approach perspective. In addition, building from this understanding, a validated and systematic framework is developed to select relevant indicators. Practical implications –The multi-indicator approach has a high tendency to double count for transportation disadvantage, increase the number of TDA population and only accounts each indicator for its individual effects. Instead, indicators that are identified based on a transportation disadvantage scenario will yield more accurate results. Keywords – transport disadvantage, the capability approach, accessibility, measuring urban transportation disadvantage, indicators selection Paper type – Academic Research Paper
Resumo:
User-Web interactions have emerged as an important area of research in the field of information science. In this study, we investigate the effects of users’ cognitive styles on their Web navigational styles and information processing strategies. We report results from the analyses of 594 minutes recorded Web search sessions of 18 participants engaged in 54 scenario-based search tasks. We use questionnaires, cognitive style test, Web session logs and think-aloud as the data collection instruments. We classify users’ cognitive styles as verbalisers and imagers based on Riding’s (1991) Cognitive Style Analysis test. Two classifications of navigational styles and three categories of information processing strategies are identified. Our study findings show that there exist relationships between users’ cognitive style, and their navigational styles and information processing strategies. Verbal users seem to display sporadic navigational styles, and adopt a scanning strategy to understand the content of the search result page, while imagery users follow a structured navigational style and reading approach. We develop a matrix and a model that depicts the relationships between users’ cognitive styles, and their navigational style and information processing strategies. We discuss how the findings from this study could help search engine designers to provide an adaptive navigation support to users.
Resumo:
Though web services offer unique opportunities for the design of new business processes, the assessment of the potential impact of Web services on existing business information systems is often reduced to technical aspects. This paper proposes a four-phase methodology which facilitates the evaluation of the potential use of Web services on business information systems both from a technical and from a strategic viewpoint. It is based on business process models, which are used to frame the adoption and deployment of Web services and to assess their impact on existing business processes. The application of this methodology is described using a procurement scenario.
Resumo:
This paper compares the performance of two droop control schemes in a hybrid microgrid. With presence of both converter interfaced and inertial sources, the droop controller share power in a decentralized fashion. Both the droop controllers facilitate reactive power sharing based on voltage droop. However in frequency droop control, the real power sharing depends on the frequency, while in angle droop control, it depends on output voltage angle. For converter interfaced sources this reference voltage is tracked while for inertial DG, reference power for the prime mover is calculated from the reference angle with the proposed angle control scheme. This coordinated control scheme shows significant improvement in system performance. The comparison with the conventional frequency droop shows that the angle control scheme shares power with much lower frequency deviation. This is a significant improvement particularly in a frequent load changing scenario.
Resumo:
LIKE much of the work that David Williamson is known for, Let the Sunshine concentrates on tensions between characters who operate mainly as mouthpieces for opposing ideologies. Left-wing documentary-maker Toby and his wife Ros have moved to Noosa to escape the rat race in Sydney and some bad press surrounding one of Toby's projects. Trying to make social connections in town, Ros has reconnected with high school classmate Natasha, now the cosmetically-enhanced wife of wealthy right-wing property developer Ron. The posturing and conflict between Toby and Ron come to a head when the women invite their grown children -- struggling songwriter Rick and stressed corporate lawyer Emma -- to dinner to celebrate Toby's birthday, and the results of this encounter drive the rest of the plot. The scenario of Let the Sunshine is contrived, the characters are stereotyped, and their conflicts are little more than an old clash of ideologies cast loosely across the mainstream news media's characterisation of the sides in debates about development, climate change and the economic crisis.
Resumo:
We aim to demonstrate unaided visual 3D pose estimation and map reconstruction using both monocular and stereo vision techniques. To date, our work has focused on collecting data from Unmanned Aerial Vehicles, which generates a number of significant issues specific to the application. Such issues include scene reconstruction degeneracy from planar data, poor structure initialisation for monocular schemes and difficult 3D reconstruction due to high feature covariance. Most modern Visual Odometry (VO) and related SLAM systems make use of a number of sensors to inform pose and map generation, including laser range-finders, radar, inertial units and vision [1]. By fusing sensor inputs, the advantages and deficiencies of each sensor type can be handled in an efficient manner. However, many of these sensors are costly and each adds to the complexity of such robotic systems. With continual advances in the abilities, small size, passivity and low cost of visual sensors along with the dense, information rich data that they provide our research focuses on the use of unaided vision to generate pose estimates and maps from robotic platforms. We propose that highly accurate (�5cm) dense 3D reconstructions of large scale environments can be obtained in addition to the localisation of the platform described in other work [2]. Using images taken from cameras, our algorithm simultaneously generates an initial visual odometry estimate and scene reconstruction from visible features, then passes this estimate to a bundle-adjustment routine to optimise the solution. From this optimised scene structure and the original images, we aim to create a detailed, textured reconstruction of the scene. By applying such techniques to a unique airborne scenario, we hope to expose new robotic applications of SLAM techniques. The ability to obtain highly accurate 3D measurements of an environment at a low cost is critical in a number of agricultural and urban monitoring situations. We focus on cameras as such sensors are small, cheap and light-weight and can therefore be deployed in smaller aerial vehicles. This, coupled with the ability of small aerial vehicles to fly near to the ground in a controlled fashion, will assist in increasing the effective resolution of the reconstructed maps.
Resumo:
Rationale, aims and objectives: Patient preference for interventions aimed at preventing in-hospital falls has not previously been investigated. This study aims to contrast the amount patients are willing to pay to prevent falls through six intervention approaches. ----- ----- Methods: This was a cross-sectional willingness-to-pay (WTP), contingent valuation survey conducted among hospital inpatients (n = 125) during their first week on a geriatric rehabilitation unit in Queensland, Australia. Contingent valuation scenarios were constructed for six falls prevention interventions: a falls consultation, an exercise programme, a face-to-face education programme, a booklet and video education programme, hip protectors and a targeted, multifactorial intervention programme. The benefit to participants in terms of reduction in risk of falls was held constant (30% risk reduction) within each scenario. ----- ----- Results: Participants valued the targeted, multifactorial intervention programme the highest [mean WTP (95% CI): $(AUD)268 ($240, $296)], followed by the falls consultation [$215 ($196, $234)], exercise [$174 ($156, $191)], face-to-face education [$164 ($146, $182)], hip protector [$74 ($62, $87)] and booklet and video education interventions [$68 ($57, $80)]. A ‘cost of provision’ bias was identified, which adversely affected the valuation of the booklet and video education intervention. ----- ----- Conclusion: There may be considerable indirect and intangible costs associated with interventions to prevent falls in hospitals that can substantially affect patient preferences. These costs could substantially influence the ability of these interventions to generate a net benefit in a cost–benefit analysis.
Resumo:
In this paper, we present a control strategy design technique for an autonomous underwater vehicle based on solutions to the motion planning problem derived from differential geometric methods. The motion planning problem is motivated by the practical application of surveying the hull of a ship for implications of harbor and port security. In recent years, engineers and researchers have been collaborating on automating ship hull inspections by employing autonomous vehicles. Despite the progresses made, human intervention is still necessary at this stage. To increase the functionality of these autonomous systems, we focus on developing model-based control strategies for the survey missions around challenging regions, such as the bulbous bow region of a ship. Recent advances in differential geometry have given rise to the field of geometric control theory. This has proven to be an effective framework for control strategy design for mechanical systems, and has recently been extended to applications for underwater vehicles. Advantages of geometric control theory include the exploitation of symmetries and nonlinearities inherent to the system. Here, we examine the posed inspection problem from a path planning viewpoint, applying recently developed techniques from the field of differential geometric control theory to design the control strategies that steer the vehicle along the prescribed path. Three potential scenarios for surveying a ship?s bulbous bow region are motivated for path planning applications. For each scenario, we compute the control strategy and implement it onto a test-bed vehicle. Experimental results are analyzed and compared with theoretical predictions.
Resumo:
Designing trajectories for a submerged rigid body motivates this paper. Two approaches are addressed: the time optimal approach and the motion planning ap- proach using concatenation of kinematic motions. We focus on the structure of singular extremals and their relation to the existence of rank-one kinematic reduc- tions; thereby linking the optimization problem to the inherent geometric frame- work. Using these kinematic reductions, we provide a solution to the motion plan- ning problem in the under-actuated scenario, or equivalently, in the case of actuator failures. We finish the paper comparing a time optimal trajectory to one formed by concatenation of pure motions.
Resumo:
The main focus of this paper is the motion planning problem for a deeply submerged rigid body. The equations of motion are formulated and presented by use of the framework of differential geometry and these equations incorporate external dissipative and restoring forces. We consider a kinematic reduction of the affine connection control system for the rigid body submerged in an ideal fluid, and present an extension of this reduction to the forced affine connection control system for the rigid body submerged in a viscous fluid. The motion planning strategy is based on kinematic motions; the integral curves of rank one kinematic reductions. This method is of particular interest to autonomous underwater vehicles which can not directly control all six degrees of freedom (such as torpedo shaped AUVs) or in case of actuator failure (i.e., under-actuated scenario). A practical example is included to illustrate our technique.
Resumo:
This paper serves as a first study on the implementation of control strategies developed using a kinematic reduction onto test bed autonomous underwater vehicles (AUVs). The equations of motion are presented in the framework of differential geometry, including external dissipative forces, as a forced affine connection control system. We show that the hydrodynamic drag forces can be included in the affine connection, resulting in an affine connection control system. The definitions of kinematic reduction and decoupling vector field are thus extended from the ideal fluid scenario. Control strategies are computed using this new extension and are reformulated for implementation onto a test-bed AUV. We compare these geometrically computed controls to time and energy optimal controls for the same trajectory which are computed using a previously developed algorithm. Through this comparison we are able to validate our theoretical results based on the experiments conducted using the time and energy efficient strategies.
Decoupled trajectory planning for a submerged rigid body subject to dissipative and potential forces
Resumo:
This paper studies the practical but challenging problem of motion planning for a deeply submerged rigid body. Here, we formulate the dynamic equations of motion of a submerged rigid body under the architecture of differential geometric mechanics and include external dissipative and potential forces. The mechanical system is represented as a forced affine-connection control system on the configuration space SE(3). Solutions to the motion planning problem are computed by concatenating and reparameterizing the integral curves of decoupling vector fields. We provide an extension to this inverse kinematic method to compensate for external potential forces caused by buoyancy and gravity. We present a mission scenario and implement the theoretically computed control strategy onto a test-bed autonomous underwater vehicle. This scenario emphasizes the use of this motion planning technique in the under-actuated situation; the vehicle loses direct control on one or more degrees of freedom. We include experimental results to illustrate our technique and validate our method.