880 resultados para Rotation-invariant feature
Resumo:
Des décennies d’observation ont permis d’obtenir différentes relations liées à l’activité stellaire. Cependant, il est difficile de reproduire numériquement celles-ci à partir de modèles dynamo, puisqu’il n’y a pas de consensus sur le processus réellement présent dans les étoiles. Nous tentons de reproduire certaines de ces relations avec un modèle global 3D hydrodynamique qui nous fournit le profil de rotation différentielle et le tenseur-α utilisés en entrée dans un modèle de dynamo αΩ. Nous reproduisons ainsi efficacement la corrélation positive entre le rapport P_cyc⁄P_rot et P_rot^(-1). Par contre, nous échouons à reproduire les relations liant ω_cyc⁄Ω et l’énergie magnétique au nombre de Rossby. Cela laisse croire que la variation de P_cyc⁄P_rot avec la période de rotation est une caractéristique robuste du modèle αΩ, mais que l’effet-α ne serait pas le processus principal limitant l’amplitude du cycle. Cette saturation découlerait plutôt de la réaction magnétique sur l’écoulement à grande échelle.
Resumo:
Les objets d’étude de cette thèse sont les systèmes d’équations quasilinéaires du premier ordre. Dans une première partie, on fait une analyse du point de vue du groupe de Lie classique des symétries ponctuelles d’un modèle de la plasticité idéale. Les écoulements planaires dans les cas stationnaire et non-stationnaire sont étudiés. Deux nouveaux champs de vecteurs ont été obtenus, complétant ainsi l’algèbre de Lie du cas stationnaire dont les sous-algèbres sont classifiées en classes de conjugaison sous l’action du groupe. Dans le cas non-stationnaire, une classification des algèbres de Lie admissibles selon la force choisie est effectuée. Pour chaque type de force, les champs de vecteurs sont présentés. L’algèbre ayant la dimension la plus élevée possible a été obtenues en considérant les forces monogéniques et elle a été classifiée en classes de conjugaison. La méthode de réduction par symétrie est appliquée pour obtenir des solutions explicites et implicites de plusieurs types parmi lesquelles certaines s’expriment en termes d’une ou deux fonctions arbitraires d’une variable et d’autres en termes de fonctions elliptiques de Jacobi. Plusieurs solutions sont interprétées physiquement pour en déduire la forme de filières d’extrusion réalisables. Dans la seconde partie, on s’intéresse aux solutions s’exprimant en fonction d’invariants de Riemann pour les systèmes quasilinéaires du premier ordre. La méthode des caractéristiques généralisées ainsi qu’une méthode basée sur les symétries conditionnelles pour les invariants de Riemann sont étendues pour être applicables à des systèmes dans leurs régions elliptiques. Leur applicabilité est démontrée par des exemples de la plasticité idéale non-stationnaire pour un flot irrotationnel ainsi que les équations de la mécanique des fluides. Une nouvelle approche basée sur l’introduction de matrices de rotation satisfaisant certaines conditions algébriques est développée. Elle est applicable directement à des systèmes non-homogènes et non-autonomes sans avoir besoin de transformations préalables. Son efficacité est illustrée par des exemples comprenant un système qui régit l’interaction non-linéaire d’ondes et de particules. La solution générale est construite de façon explicite.
Resumo:
A measure of association is row-size invariant if it is unaffected by the multiplication of all entries in a row of a cross-classification table by a same positive number. It is class-size invariant if it is unaffected by the multiplication of all entries in a class (i.e., a row or a column). We prove that every class-size invariant measure of association as-signs to each m x n cross-classification table a number which depends only on the cross-product ratios of its 2 x 2 subtables. We propose a monotonicity axiom requiring that the degree of association should increase after shifting mass from cells of a table where this mass is below its expected value to cells where it is above .provided that total mass in each class remains constant. We prove that no continuous row-size invariant measure of association is monotonic if m ≥ 4. Keywords: association, contingency tables, margin-free measures, size invariance, monotonicity, transfer principle.
Resumo:
La perception visuelle ne se résume pas à la simple perception des variations de la quantité de lumière qui atteint la rétine. L’image naturelle est en effet composée de variation de contraste et de texture que l’on qualifie d’information de deuxième ordre (en opposition à l’information de premier ordre : luminance). Il a été démontré chez plusieurs espèces qu’un mouvement de deuxième ordre (variation spatiotemporelle du contraste ou de la texture) est aisément détecté. Les modèles de détection du mouvement tel le modèle d’énergie d’Adelson et Bergen ne permettent pas d’expliquer ces résultats, car le mouvement de deuxième ordre n’implique aucune variation de la luminance. Il existe trois modèles expliquant la détection du mouvement de deuxième ordre : la présence d’une circuiterie de type filter-rectify-filter, un mécanisme de feature-tracking ou simplement l’existence de non-linéarités précoces dans le traitement visuel. Par ailleurs, il a été proposé que l’information visuelle de deuxième ordre soit traitée par une circuiterie neuronale distincte de celle qui traite du premier ordre. Bon nombre d’études réfutent cependant cette théorie et s’entendent sur le fait qu’il n’y aurait qu’une séparation partielle à bas niveau. Les études électrophysiologiques sur la perception du mouvement de deuxième ordre ont principalement été effectuées chez le singe et le chat. Chez le chat, toutefois, seules les aires visuelles primaires (17 et 18) ont été extensivement étudiées. L’implication dans le traitement du deuxième ordre de l’aire dédiée à la perception du mouvement, le Sulcus syprasylvien postéro-médian latéral (PMLS), n’est pas encore connue. Pour ce faire, nous avons étudié les profils de réponse des neurones du PMLS évoqués par des stimuli dont la composante dynamique était de deuxième ordre. Les profils de réponses au mouvement de deuxième ordre sont très similaires au premier ordre, bien que moins sensibles. Nos données suggèrent que la perception du mouvement par le PMLS serait de type form-cue invariant. En somme, les résultats démontrent que le PMLS permet un traitement plus complexe du mouvement du deuxième ordre et sont en accord avec son rôle privilégié dans la perception du mouvement.
Resumo:
Un algorithme permettant de discrétiser les équations aux dérivées partielles (EDP) tout en préservant leurs symétries de Lie est élaboré. Ceci est rendu possible grâce à l'utilisation de dérivées partielles discrètes se transformant comme les dérivées partielles continues sous l'action de groupes de Lie locaux. Dans les applications, beaucoup d'EDP sont invariantes sous l'action de transformations ponctuelles de Lie de dimension infinie qui font partie de ce que l'on désigne comme des pseudo-groupes de Lie. Afin d'étendre la méthode de discrétisation préservant les symétries à ces équations, une discrétisation des pseudo-groupes est proposée. Cette discrétisation a pour effet de transformer les symétries ponctuelles en symétries généralisées dans l'espace discret. Des schémas invariants sont ensuite créés pour un certain nombre d'EDP. Dans tous les cas, des tests numériques montrent que les schémas invariants approximent mieux leur équivalent continu que les différences finies standard.
Resumo:
For the discrete-time quadratic map xt+1=4xt(1-xt) the evolution equation for a class of non-uniform initial densities is obtained. It is shown that in the t to infinity limit all of them approach the invariant density for the map.
Resumo:
It is shown that the invariant integral, viz., the Kolmogorov second entropy, is eminently suited to characterize EEG quantitatively. The estimation obtained for a "clinically normal" brain is compared with a previous result obtained from the EEG of a person under epileptic seizure.
Resumo:
Exchange-biased Ni/FeF2 films have been investigated using vector coil vibrating-sample magnetometry as a function of the cooling field strength HFC . In films with epitaxial FeF2 , a loop bifurcation develops with increasing HFC as it divides into two sub-loops shifted oppositely from zero field by the same amount. The positively biased sub-loop grows in size with HFC until only a single positively shifted loop is found. Throughout this process, the negative and positive (sub)loop shifts maintain the same discrete value. This is in sharp contrast to films with twinned FeF2 where the exchange field gradually changes with increasing HFC . The transverse magnetization shows clear correlations with the longitudinal subloops. Interestingly, over 85% of the Ni reverses its magnetization by rotation, either in one step or through two successive rotations. These results are due to the single-crystal nature of the antiferromagnetic FeF2 , which breaks down into two opposite regions of large domains.
Resumo:
Magnetic Resonance Imaging (MRI) is a multi sequence medical imaging technique in which stacks of images are acquired with different tissue contrasts. Simultaneous observation and quantitative analysis of normal brain tissues and small abnormalities from these large numbers of different sequences is a great challenge in clinical applications. Multispectral MRI analysis can simplify the job considerably by combining unlimited number of available co-registered sequences in a single suite. However, poor performance of the multispectral system with conventional image classification and segmentation methods makes it inappropriate for clinical analysis. Recent works in multispectral brain MRI analysis attempted to resolve this issue by improved feature extraction approaches, such as transform based methods, fuzzy approaches, algebraic techniques and so forth. Transform based feature extraction methods like Independent Component Analysis (ICA) and its extensions have been effectively used in recent studies to improve the performance of multispectral brain MRI analysis. However, these global transforms were found to be inefficient and inconsistent in identifying less frequently occurred features like small lesions, from large amount of MR data. The present thesis focuses on the improvement in ICA based feature extraction techniques to enhance the performance of multispectral brain MRI analysis. Methods using spectral clustering and wavelet transforms are proposed to resolve the inefficiency of ICA in identifying small abnormalities, and problems due to ICA over-completeness. Effectiveness of the new methods in brain tissue classification and segmentation is confirmed by a detailed quantitative and qualitative analysis with synthetic and clinical, normal and abnormal, data. In comparison to conventional classification techniques, proposed algorithms provide better performance in classification of normal brain tissues and significant small abnormalities.
Resumo:
Speech signals are one of the most important means of communication among the human beings. In this paper, a comparative study of two feature extraction techniques are carried out for recognizing speaker independent spoken isolated words. First one is a hybrid approach with Linear Predictive Coding (LPC) and Artificial Neural Networks (ANN) and the second method uses a combination of Wavelet Packet Decomposition (WPD) and Artificial Neural Networks. Voice signals are sampled directly from the microphone and then they are processed using these two techniques for extracting the features. Words from Malayalam, one of the four major Dravidian languages of southern India are chosen for recognition. Training, testing and pattern recognition are performed using Artificial Neural Networks. Back propagation method is used to train the ANN. The proposed method is implemented for 50 speakers uttering 20 isolated words each. Both the methods produce good recognition accuracy. But Wavelet Packet Decomposition is found to be more suitable for recognizing speech because of its multi-resolution characteristics and efficient time frequency localizations
Effectiveness Of Feature Detection Operators On The Performance Of Iris Biometric Recognition System
Resumo:
Iris Recognition is a highly efficient biometric identification system with great possibilities for future in the security systems area.Its robustness and unobtrusiveness, as opposed tomost of the currently deployed systems, make it a good candidate to replace most of thesecurity systems around. By making use of the distinctiveness of iris patterns, iris recognition systems obtain a unique mapping for each person. Identification of this person is possible by applying appropriate matching algorithm.In this paper, Daugman’s Rubber Sheet model is employed for irisnormalization and unwrapping, descriptive statistical analysis of different feature detection operators is performed, features extracted is encoded using Haar wavelets and for classification hammingdistance as a matching algorithm is used. The system was tested on the UBIRIS database. The edge detection algorithm, Canny, is found to be the best one to extract most of the iris texture. The success rate of feature detection using canny is 81%, False Accept Rate is 9% and False Reject Rate is 10%.
Resumo:
Speech processing and consequent recognition are important areas of Digital Signal Processing since speech allows people to communicate more natu-rally and efficiently. In this work, a speech recognition system is developed for re-cognizing digits in Malayalam. For recognizing speech, features are to be ex-tracted from speech and hence feature extraction method plays an important role in speech recognition. Here, front end processing for extracting the features is per-formed using two wavelet based methods namely Discrete Wavelet Transforms (DWT) and Wavelet Packet Decomposition (WPD). Naive Bayes classifier is used for classification purpose. After classification using Naive Bayes classifier, DWT produced a recognition accuracy of 83.5% and WPD produced an accuracy of 80.7%. This paper is intended to devise a new feature extraction method which produces improvements in the recognition accuracy. So, a new method called Dis-crete Wavelet Packet Decomposition (DWPD) is introduced which utilizes the hy-brid features of both DWT and WPD. The performance of this new approach is evaluated and it produced an improved recognition accuracy of 86.2% along with Naive Bayes classifier.
Resumo:
Speech is a natural mode of communication for people and speech recognition is an intensive area of research due to its versatile applications. This paper presents a comparative study of various feature extraction methods based on wavelets for recognizing isolated spoken words. Isolated words from Malayalam, one of the four major Dravidian languages of southern India are chosen for recognition. This work includes two speech recognition methods. First one is a hybrid approach with Discrete Wavelet Transforms and Artificial Neural Networks and the second method uses a combination of Wavelet Packet Decomposition and Artificial Neural Networks. Features are extracted by using Discrete Wavelet Transforms (DWT) and Wavelet Packet Decomposition (WPD). Training, testing and pattern recognition are performed using Artificial Neural Networks (ANN). The proposed method is implemented for 50 speakers uttering 20 isolated words each. The experimental results obtained show the efficiency of these techniques in recognizing speech
Resumo:
Treating e-mail filtering as a binary text classification problem, researchers have applied several statistical learning algorithms to email corpora with promising results. This paper examines the performance of a Naive Bayes classifier using different approaches to feature selection and tokenization on different email corpora
Resumo:
This paper presents the application of wavelet processing in the domain of handwritten character recognition. To attain high recognition rate, robust feature extractors and powerful classifiers that are invariant to degree of variability of human writing are needed. The proposed scheme consists of two stages: a feature extraction stage, which is based on Haar wavelet transform and a classification stage that uses support vector machine classifier. Experimental results show that the proposed method is effective