997 resultados para Road images
Resumo:
The work presented evaluates the statistical characteristics of regional bias and expected error in reconstructions of real positron emission tomography (PET) data of human brain fluoro-deoxiglucose (FDG) studies carried out by the maximum likelihood estimator (MLE) method with a robust stopping rule, and compares them with the results of filtered backprojection (FBP) reconstructions and with the method of sieves. The task of evaluating radioisotope uptake in regions-of-interest (ROIs) is investigated. An assessment of bias and variance in uptake measurements is carried out with simulated data. Then, by using three different transition matrices with different degrees of accuracy and a components of variance model for statistical analysis, it is shown that the characteristics obtained from real human FDG brain data are consistent with the results of the simulation studies.
Resumo:
Segmenting ultrasound images is a challenging problemwhere standard unsupervised segmentation methods such asthe well-known Chan-Vese method fail. We propose in thispaper an efficient segmentation method for this class ofimages. Our proposed algorithm is based on asemi-supervised approach (user labels) and the use ofimage patches as data features. We also consider thePearson distance between patches, which has been shown tobe robust w.r.t speckle noise present in ultrasoundimages. Our results on phantom and clinical data show avery high similarity agreement with the ground truthprovided by a medical expert.
Resumo:
Spatial resolution is a key parameter of all remote sensing satellites and platforms. The nominal spatial resolution of satellites is a well-known characteristic because it is directly related to the area in ground that represents a pixel in the detector. Nevertheless, in practice, the actual resolution of a specific image obtained from a satellite is difficult to know precisely because it depends on many other factors such as atmospheric conditions. However, if one has two or more images of the same region, it is possible to compare their relative resolutions. In this paper, a wavelet-decomposition-based method for the determination of the relative resolution between two remotely sensed images of the same area is proposed. The method can be applied to panchromatic, multispectral, and mixed (one panchromatic and one multispectral) images. As an example, the method was applied to compute the relative resolution between SPOT-3, Landsat-5, and Landsat-7 panchromatic and multispectral images taken under similar as well as under very different conditions. On the other hand, if the true absolute resolution of one of the images of the pair is known, the resolution of the other can be computed. Thus, in the last part of this paper, a spatial calibrator that is designed and constructed to help compute the absolute resolution of a single remotely sensed image is described, and an example of its use is presented.
Resumo:
This paper describes the development and applications of a super-resolution method, known as Super-Resolution Variable-Pixel Linear Reconstruction. The algorithm works combining different lower resolution images in order to obtain, as a result, a higher resolution image. We show that it can make significant spatial resolution improvements to satellite images of the Earth¿s surface allowing recognition of objects with size approaching the limiting spatial resolution of the lower resolution images. The algorithm is based on the Variable-Pixel Linear Reconstruction algorithm developed by Fruchter and Hook, a well-known method in astronomy but never used for Earth remote sensing purposes. The algorithm preserves photometry, can weight input images according to the statistical significance of each pixel, and removes the effect of geometric distortion on both image shape and photometry. In this paper, we describe its development for remote sensing purposes, show the usefulness of the algorithm working with images as different to the astronomical images as the remote sensing ones, and show applications to: 1) a set of simulated multispectral images obtained from a real Quickbird image; and 2) a set of multispectral real Landsat Enhanced Thematic Mapper Plus (ETM+) images. These examples show that the algorithm provides a substantial improvement in limiting spatial resolution for both simulated and real data sets without significantly altering the multispectral content of the input low-resolution images, without amplifying the noise, and with very few artifacts.
Resumo:
The proposed project consists of improving approximately 2.6 miles of Collins Road NE (Highway 100) in Cedar Rapids, Iowa. The project extends from the intersection of Center Point Road to approximately 750 feet east of its intersection with 1st Avenue.
Resumo:
l'imagerie par résonance magnétique (IRMC) est une technologie utilisée depuis les aimées quatre¬-vingts dans le monde de la cardiologie. Cette technique d'imagerie non-invasive permet d'acquérir Ses images du coeur en trois dimensions, dans n'importe quel, plan, sans application de radiation, et en haute résolution. Actuellement, cette technique est devenue un référence dans l'évaluation et 'l'investigation de différentes pathologies cardiaques. La morphologie cardiaque, la fonction des ventricules ainsi que leur contraction, la perfusion tissulaire ainsi que la viabilité tissulaire peuvent être caractérisés en utilisant différentes séquences d'imagerie. Cependant, cette technologie repose sur des principes physiques complexes et la mise en pratique de cette technique se heurte à la difficulté d'évaluer un organe en mouvement permanent. L'IRM cardiaque est donc sujette à différents artefacts qui perturbent l'interprétation des examens et peuvent diminuer la précision diagnostique de cette technique. A notre connaissance, la plupart des images d'IRMC sont analysées et interprétées sans évaluation rigoureuse de la qualité intrinsèque de l'examen. Jusqu'à présent, et à notre connaissance, aucun critère d'évaluation de la qualité des examens d'IRMC n'a été clairement déterminé. L'équipe d'IRMC du CHUV, dirigée par le Prof J. Schwitter, a recensé une liste de 35 critères qualitatifs et 12 critères quantitatifs évaluant la qualité d'un examen d'IRMC et les a introduit dans une grille d'évaluation. L'objet de cette étude est de décrire et de valider la reproductibilité des critères figurant dans cette grille d'évaluation, par l'interprétation simultanée d'examens IRMC par différents observateurs (cardiologues spécialisés en IRM, étudiant en médecine, infirmière spécialisée). Notre étude a permis de démontrer que les critères définis pour l'évaluation des examens d'IRMC sont robustes, et permettent une bonne reproductibilité intra- et inter-observateurs. Cette étude valide ainsi l'utilisation de ces critères de qualité dans le cadre de l'imagerie par résonance magnétique cardiaque. D'autres études sont encore nécessaires afin de déterminer l'impact de la qualité de l'image sur la précision diagnostique de cette technique. Les critères standardisés que nous avons validés seront utilisés pour évaluer la qualité des images dans le cadre d'une étude à échelle européenne relative à l'IRMC : "l'EuroCMR registry". Parmi les autres utilités visées par ces critères de qualité, citons notamment la possibilité d'avoir une référence d'évaluation de la qualité d'examen pour toutes les futures études cliniques utilisant la technologie d'IRMC, de permettre aux centres d'IRMC de quantifier leur niveau de qualité, voire de créer un certificat de standard de qualité pour ces centres, d'évaluer la reproductibilité de l'évaluation des images par différents observateurs d'un même centre, ou encore d'évaluer précisément la qualité des séquences développées à l'avenir dans le monde de l'IRMC.
Resumo:
In this work we present a method for the image analysisof Magnetic Resonance Imaging (MRI) of fetuses. Our goalis to segment the brain surface from multiple volumes(axial, coronal and sagittal acquisitions) of a fetus. Tothis end we propose a two-step approach: first, a FiniteGaussian Mixture Model (FGMM) will segment the image into3 classes: brain, non-brain and mixture voxels. Second, aMarkov Random Field scheme will be applied tore-distribute mixture voxels into either brain ornon-brain tissue. Our main contributions are an adaptedenergy computation and an extended neighborhood frommultiple volumes in the MRF step. Preliminary results onfour fetuses of different gestational ages will be shown.
Resumo:
Not only are we excited that Team Archaeology is back for our third ride, we are energized to be part of a “Human and Natural History” partnership that allows us expanded opportunities to share the story of Iowa’s amazing past. Once again there will be archaeologists along for the ride, as well as at Expo and this year at roadside locations Day One, Five and Six. Don’t hesitate to ask about the history of the first people to travel this landscape as well as the stories of each generation that has contributed to what we know of ourselves today. We will also feature information about the landscape and natural resources of Iowa you will encounter along the route through our partnering colleagues specializing in geology, hydrology, and other earth sciences. Enjoy using this booklet as your guide to the week’s activities and please help yourself to free materials from our outreach booth about our shared past and the natural world we depend on. Ride smart, be safe, and when you get home, be sure to tell your friends and neighbors about Iowa archaeology!
Resumo:
Team Archaeology is back for a second year to share the history of Iowa with the riders and supporters of RAGBRAI.