970 resultados para Rhinoceros (Genus)
Resumo:
The holotype of the Antarctic octopodid Graneledone setebos was re-examined and found to lack the epidermal warts characteristic of the genus Graneledone. It is similar in its large size to another Southern Ocean species, Megaleledone senoi. A comparative study of G. setebos and specimens attributed to M. senoi led us to conclude that M. senoi is a junior synonym of G. setebos. Although M. senoi is not valid, the genus Megaleledone can be separated from other genera by the structure of the radula (which lacks marginal plates) and we therefore consider the genus to be valid. We propose the new combination of Megaleledone setebos and have refigured the beaks and radula of the holotype herein and expanded the description. A search of museum specimens and the literature shows that Megaleledone setebos is more common in Antarctic waters than previously supposed.
Resumo:
Knowledge of the levels of genetic diversity maintained in natural populations can play a central role in conservation programmes, particularly in threatened habitats or species. Fluctuations in population size can lead to loss of variation and, consequently, increase the risk of extinction. We have examined whether such a genetic bottleneck has occurred in populations of two species in the seagrass genus Zostera, which are believed to have been affected by an outbreak of wasting disease at the start of the last century. A test for heterozygote excess at five nuclear microsatellite loci did not suggest the occurrence of a genetic bottleneck, but analysis of seven chloroplast microsatellite loci and sequence data from two regions did suggest a bottleneck in the chloroplast genome. Extremely low levels of between-population diversity suggest that all subpopulations can be treated as a single management unit for each species. Comparable levels of nuclear genetic diversity were found in the three populations of the primarily sexual Zostera marina var. angustifolia studied but a wider range of within-population diversity was found in Zostera noltii, which displays both. sexual and vegetative reproductive strategies. This may be due to an increase in sexual recruitment due to localised fresh water inflow into the study site near to the most diverse population. Such populations should be prioritised as source material for any replanting or remediation due to natural or anthropogenic loss of Zostera beds in the area.
Resumo:
Despite the potential model role of the green algal genus Codium for studies of marine speciation and evolution, there have been difficulties with species delimitation and a molecular phylogenetic framework was lacking. In the present study, 74 evolutionarily significant units (ESUs) are delimited using 227 rbcL exon 1 sequences obtained from specimens collected throughout the genus' range. Several morpho-species were shown to be poorly defined, with some clearly in need of lumping and others containing pseudo-cryptic diversity. A phylogenetic hypothesis of 72 Codium ESUs is inferred from rbcL exon 1 and rps3-rp/16 sequence data using a conventional nucleotide substitution model (GTR + Gamma + I), a codon position model and a covariotide (covarion) model, and the fit of a multitude of substitution models and alignment partitioning strategies to the sequence data is reported. Molecular clock tree rooting was carried out because out-group rooting was probably affected by phylogenetic bias. Several aspects of the evolution of morphological features of Codium are discussed and the inferred phylogenetic hypothesis is used as a framework to study the biogeography of the genus, both at a global scale and within the Indian Ocean. (c) 2007 Elsevier Inc. All rights reserved.
Resumo:
The genus Asparagopsis was studied using 25 Falkenbergia tetrasporophyte strains collected worldwide. Plastid (cp) DNA RFLP revealed three groups of isolates, which differed in their small subunit rRNA gene sequences, temperature responses, and tetrasporophytic morphology (cell sizes). Strains from Australia, Chile, San Diego, and Atlantic and Mediterranean Europe were identifiable as A. armata Harvey, the gametophyte of which has distinctive barbed spines. This species is believed to be endemic to cold-temperate waters of Australia and New Zealand and was introduced into Europe in the 1920s. All isolates showed identical cpDNA RFLPs, consistent with a recent introduction from Australia. Asparagopsis taxiformis (Delile) Trevisan, the type and only other recognized species, which lacks spines, is cosmopolitan in warm-temperate to tropical waters. Two clades differed morphologically and ecophysiologically and in the future could be recognized as sibling species or subspecies. A Pacific/Italian clade had 4-8degrees C lower survival minima and included a genetically distinct apomictic isolate from Western Australia that corresponded to the form of A. taxiformis originally described as A. sanfordiana Harvey. The second clade, from the Caribbean and the Canaries, is stenothermal (subtropical to tropical) with some ecotypic variation. The genus Asparagopsis consists of two or possibly three species, but a definitive taxonomic treatment of the two A. taxiformis clades requires study of field-collected gametophytes.
Resumo:
The origin and evolution of venom proteins in helodermatid lizards were investigated by multidisciplinary techniques. Our analyses elucidated novel toxin types resultant from three unique domain-expression processes: 1) The first full-length sequences of lethal toxin isoforms (helofensins) revealed this toxin type to be constructed by an ancestral monodomain, monoproduct gene (beta-defensin) that underwent three tandem domain duplications to encode a tetradomain, monoproduct with a possible novel protein fold; 2) an ancestral monodomain gene (encoding a natriuretic peptide) was medially extended to become a pentadomain, pentaproduct through the additional encoding of four tandemly repeated proline-rich peptides (helokinestatins), with the five discrete peptides liberated from each other by posttranslational proteolysis; and 3) an ancestral multidomain, multiproduct gene belonging to the vasoactive intestinal peptide (VIP)/glucagon family being mutated to encode for a monodomain, monoproduct (exendins) followed by duplication and diversification into two variant classes (exendins 1 and 2 and exendins 3 and 4). Bioactivity characterization of exendin and helokinestatin elucidated variable cardioactivity between isoforms within each class. These results highlight the importance of utilizing evolutionary-based search strategies for biodiscovery and the virtually unexplored potential of lizard venoms in drug design and discovery.