963 resultados para Reversals: Process, Time Scale, Magnetostratigraphy
Resumo:
We consider an economy where the production technology has constantreturns to scale but where in the descentralized equilibrium thereare aggregate increasing returns to scale. The result follows froma positive contracting externality among firms. If a firms issurrounded by more firms, employees have more opportunitiesoutside their own firm. This improves employees' incentives toinvest in the presence of ex post renegotiation at the firm level,at not cost. Our leading result is that if a region is sparselypopulated or if the degree of development in the region is lowenough, there are multiple equilibria in the level of sectorialemployment. From the theoretical model we derive a non-linearfirst-order censored difference equation for sectoral employment.Our results are strongly consistent with the multiple equilibriahypothesis and the existence of a sectoral critical scale (belowwich the sector follows a delocation process). The scale of theregions' population and the degree of development reduce thecritical scale of the sector.
Resumo:
Jurassic volcanic formations interlayered with (ammonite-bearing) sediments are common in the Caucasus area; this situation is of interest for the numerical calibration of the poorly documented Jurassic portion of the time scale. However, following petrographic study on thin sections no whole-rocks can be considered reliable geochronometers due to subsequent alteration; from about 20 samples, two were selected for plagioclase dating; one (V134) is probably early Kimmeridgian in age; the other (V136) is probably located in the Lower Bathonian stage according to diagnostic ammonites. Cathodoluminescence (CTL) study has shown that sample V136 was similar to usual volcanic feldspars (blue to green colour); however, the lack of CTL of the V134 plagioclase is a character common to diagenetic feldspars; consequently, in spite of a good optical preservation, this geo-chronometer cannot give an age representative of the time of emplacement of the lava flow. We have combined CTL observation with microprobe analysis in order to document the poorly known CTL behaviour of volcanic feldspars; cations Ti4+ and Fe2+ play a major role in the CTL colour of plagioclases and are able to document the growing history of these feldspars ; phenocrysts are initially rich in Fe2+ (core of the crystals, green in colour), then richer in Ti toward the exterior; microcrysts are even richer in Ti (blue to bright blue). We have also observed that natural CTL colour was modified resulting from acid ``cleaning'' of the separated feldspars : the initial blue or green colour tends to change to yellow or violet, respectively, after acid treatment probably due to oxydation of Fe2+ toward Fe3+. X-ray and microprobe analyses both indicated that plagioclases from sample V134 was near the sodic end member (albite) suggesting a diagenetic origin in this andesitic basalt; In contrast, sample V136 contains a calcic plagioclase of common composition for a doleritic basalt. The K-Ar conventional technique was applied as a preliminary tool for radiometric analysis. The Kimmeridgian Na-plagioclase sample gave a ``rejuvenated'' (85 Ma) apparent age which confirms a late genesis for the separated plagioclase phase; this interpretation is based on CTL observation, X-ray analysis, and microprobe analysis ; these techniques are able to distinguish samples which have been submitted to diagenetic alteration from those which have not. An age consistent with the stratigraphic location has been obtained from sample V136. This age of 161 +/- 3 (2-sigma) Ma, is the first one available from a sample palaeontologically located with reasonable precision within the mid Jurassic time.
Resumo:
BACKGROUND: Questions remain about how brief motivational interventions (BMIs) for unhealthy alcohol use work, and addressing these questions may be important for improving their efficacy. Therefore, we assessed the effects of various characteristics of BMIs on drinking outcomes across 3 randomized controlled trials (RCTs). METHODS: Audio recordings of 314 BMIs were coded. We used the global rating scales of the Motivational Interviewing Skills Code (MISC) 2.1: counselor's acceptance, empathy, and motivational interviewing (MI) spirit, and patient's self-exploration were rated. MI proficiency was defined as counselor's rating scale scores ≥5. We also used the structure, confrontation, and advice subscale scores of the Therapy Process Rating Scale and the Working Alliance Inventory. We examined these process characteristics in interventions across 1 U.S. RCT of middle-aged medical inpatients with unhealthy alcohol use (n = 124) and 2 Swiss RCTs of young men with binge drinking in a nonclinical setting: Swiss-one (n = 62) and Swiss-two (n = 128). We assessed the associations between these characteristics and drinks/d reported by participants 3 to 6 months after study entry. RESULTS: In all 3 RCTs, mean MISC counselor's rating scales scores were consistent with MI proficiency. In overdispersed Poisson regression models, most BMI characteristics were not significantly associated with drinks/d in follow-up. In the U.S. RCT, confrontation and self-exploration were associated with more drinking. Giving advice was significantly associated with less drinking in the Swiss-one RCT. Contrary to expectations, MI spirit was not consistently associated with drinking across studies. CONCLUSIONS: Across different populations and settings, intervention characteristics viewed as central to efficacious BMIs were neither robust nor consistent predictors of drinking outcome. Although there may be alternative reasons why the level of MI processes was not predictive of outcomes in these studies (limited variability in scores), efforts to understand what makes BMIs efficacious may require attention to factors beyond intervention process characteristics typically examined.
Resumo:
We present a theoretical investigation of shot-noise properties in nondegenerate elastic diffusive conductors. Both Monte Carlo simulations and analytical approaches are used. Two interesting phenomena are found: (i) the display of enhanced shot noise for given energy dependences of the scattering time, and (ii) the recovery of full shot noise for asymptotic high applied bias. The first phenomenon is associated with the onset of negative differential conductivity in energy space that drives the system towards a dynamical electrical instability in excellent agreement with analytical predictions. The enhancement is found to be strongly amplified when the dimensionality in momentum space is lowered from three to two dimensions. The second phenomenon is due to the suppression of the effects of long-range Coulomb correlations that takes place when the transit time becomes the shortest time scale in the system, and is common to both elastic and inelastic nondegenerate diffusive conductors. These phenomena shed different light in the understanding of the anomalous behavior of shot noise in mesoscopic conductors, which is a signature of correlations among different current pulses.
Resting-state temporal synchronization networks emerge from connectivity topology and heterogeneity.
Resumo:
Spatial patterns of coherent activity across different brain areas have been identified during the resting-state fluctuations of the brain. However, recent studies indicate that resting-state activity is not stationary, but shows complex temporal dynamics. We were interested in the spatiotemporal dynamics of the phase interactions among resting-state fMRI BOLD signals from human subjects. We found that the global phase synchrony of the BOLD signals evolves on a characteristic ultra-slow (<0.01Hz) time scale, and that its temporal variations reflect the transient formation and dissolution of multiple communities of synchronized brain regions. Synchronized communities reoccurred intermittently in time and across scanning sessions. We found that the synchronization communities relate to previously defined functional networks known to be engaged in sensory-motor or cognitive function, called resting-state networks (RSNs), including the default mode network, the somato-motor network, the visual network, the auditory network, the cognitive control networks, the self-referential network, and combinations of these and other RSNs. We studied the mechanism originating the observed spatiotemporal synchronization dynamics by using a network model of phase oscillators connected through the brain's anatomical connectivity estimated using diffusion imaging human data. The model consistently approximates the temporal and spatial synchronization patterns of the empirical data, and reveals that multiple clusters that transiently synchronize and desynchronize emerge from the complex topology of anatomical connections, provided that oscillators are heterogeneous.
Resumo:
Cardiac L-type Ca (CaV1.2) channels are composed of a pore forming CaV1.2-α1 subunit and auxiliary β- and α2δ-subunits. β-subunits are important not only for surface expression of the channel pore but also for modulation of channel gating properties. Different β-subunits differentially modulate channel activity (Hullin et al., PLOSone, 2007) and thus L-type Ca2+ channel gating is altered when β-subunit expression pattern is changed. In human heart failure increased activity of single ventricular L-type Ca2+-channels is associated with an increased expression of β2-subunits. Interestingly, induction of β2-subunit over-expression in hearts of transgenic mice resembled this heart failure phenotype of hyperactive single L-type Ca2+-channel channels (Beetz et al., Cardiovasc Res. 2009). We hypothesised that competition of less stimulating β-subunits (e.g. β1) with β-subunits causing strong channel stimulation (e.g. β2) might be a means to treat dysfunctional L-type Ca2+-channel activity. To test this hypothesis, we performed whole-cell and single-channel measurements employing recombinant CaV1.2 channels expressed in HEK293 cells together with both β- and β1a2b-subunits. Whole-cell analysis revealed no differences of maximum L-type Ca2+-current densities [pA/pF] with coexpression of either β1a-subunits (-52±3.8), β2b-subunits (-61.5±6.6) or the mixtures of β- and β1a2b-subunits with the plasmid transfection ratio of 2:1 (-60.2±1.6) and 1:1 (-56.7±2.6) respectively. However, steady state inactivation kinetics differed between particular β-subunit and the relative amount of β-subunit presence in the mixtures (β1a1a-subunit (-41.1±1.0), β2b-subunits (-35.1±1.1), mixture 2:1 (-40.3±1.5), and mixture 1:1 (-38.4±2.0); [mV]; p<0.05, students t-test). Using a novel single-channel analysis, switching of gating between β1-like and β2-like modes was monitored on a minute time-scale when both β-subunits were co-expressed in the same cells, but the larger amount of β1a-subunits is required for the effective switching of gating. Our results indicate a model of mutually exclusive binding and effective competition between several β-subunits suggesting that hyperactive channel gating mediated e.g. by β2-subunits can be normalized by β1-subunits. Therefore, competitive replacement between different L-type Ca2+-channel β-subunits might serve as a novel therapeutic strategy for e.g. heart failure.
Resumo:
We provide analytical evidence of stochastic resonance in polarization switching vertical-cavity surface-emitting lasers (VCSELs). We describe the VCSEL by a two-mode stochastic rate equation model and apply a multiple time-scale analysis. We were able to reduce the dynamical description to a single stochastic differential equation, which is the starting point of the analytical study of stochastic resonance. We confront our results with numerical simulations on the original rate equations, validating the use of a multiple time-scale analysis on stochastic equations as an analytical tool.
Resumo:
The intensity correlation functions C(t) for the colored-gain-noise model of dye lasers are analyzed and compared with those for the loss-noise model. For correlation times ¿ larger than the deterministic relaxation time td, we show with the use of the adiabatic approximation that C(t) values coincide for both models. For small correlation times we use a method that provides explicit expressions of non-Markovian correlation functions, approximating simultaneously short- and long-time behaviors. Comparison with numerical simulations shows excellent results simultaneously for short- and long-time regimes. It is found that, when the correlation time of the noise increases, differences between the gain- and loss-noise models tend to disappear. The decay of C(t) for both models can be described by a time scale that approaches the deterministic relaxation time. However, in contrast with the loss-noise model, a secondary time scale remains for large times for the gain-noise model, which could allow one to distinguish between both models.
Resumo:
We explore the possibility that the dark energy is due to a potential of a scalar field and that the magnitude and the slope of this potential in our part of the Universe are largely determined by anthropic selection effects. We find that, in some models, the most probable values of the slope are very small, implying that the dark energy density stays constant to very high accuracy throughout cosmological evolution. In other models, however, the most probable values of the slope are such that the slow roll condition is only marginally satisfied, leading to a recollapse of the local universe on a time scale comparable to the lifetime of the Sun. In the latter case, the effective equation of state varies appreciably with the redshift, leading to a number of testable predictions.
Resumo:
The nonexponential relaxation occurring in complex dynamics manifested in a wide variety of systems is analyzed through a simple model of diffusion in phase space. It is found that the inability of the system to find its equilibrium state in any time scale becomes apparent in an effective temperature field, which leads to a hierarchy of relaxation times responsible for the slow relaxation phenomena.
Resumo:
Liddle syndrome is an autosomal dominant form of hypertension resulting from deletion or missense mutations of a PPPxY motif in the cytoplasmic COOH terminus of either the beta or gamma subunit of the epithelial Na channel (ENaC). These mutations lead to increased channel activity. In this study we show that wild-type ENaC is downregulated by intracellular Na+, and that Liddle mutants decrease the channel sensitivity to inhibition by intracellular Na+. This event results at high intracellular Na+ activity in 1.2-2.4-fold higher cell surface expression, and 2.8-3.5-fold higher average current per channel in Liddle mutants compared with the wild type. In addition, we show that a rapid increase in the intracellular Na+ activity induced downregulation of the activity of wild-type ENaC, but not Liddle mutants, on a time scale of minutes, which was directly correlated to the magnitude of the Na+ influx into the oocytes. Feedback inhibition of ENaC by intracellular Na+ likely represents an important cellular mechanism for controlling Na+ reabsorption in the distal nephron that has important implications for the pathogenesis of hypertension.
Resumo:
The stable co-existence of two haploid genotypes or two species is studied in a spatially heterogeneous environment submitted to a mixture of soft selection (within-patch regulation) and hard selection (outside-patch regulation) and where two kinds of resource are available. This is analysed both at an ecological time-scale (short term) and at an evolutionary time-scale (long term). At an ecological scale, we show that co-existence is very unlikely if the two competitors are symmetrical specialists exploiting different resources. In this case, the most favourable conditions are met when the two resources are equally available, a situation that should favour generalists at an evolutionary scale. Alternatively, low within-patch density dependence (soft selection) enhances the co-existence between two slightly different specialists of the most available resource. This results from the opposing forces that are acting in hard and soft regulation modes. In the case of unbalanced accessibility to the two resources, hard selection favours the most specialized genotype, whereas soft selection strongly favours the less specialized one. Our results suggest that competition for different resources may be difficult to demonstrate in the wild even when it is a key factor in the maintenance of adaptive diversity. At an evolutionary scale, a monomorphic invasive evolutionarily stable strategy (ESS) always exists. When a linear trade-off exists between survival in one habitat versus that in another, this ESS lies between an absolute adjustment of survival to niche size (for mainly soft-regulated populations) and absolute survival (specialization) in a single niche (for mainly hard-regulated populations). This suggests that environments in agreement with the assumptions of such models should lead to an absence of adaptive variation in the long term.
Resumo:
Brain fluctuations at rest are not random but are structured in spatial patterns of correlated activity across different brain areas. The question of how resting-state functional connectivity (FC) emerges from the brain's anatomical connections has motivated several experimental and computational studies to understand structure-function relationships. However, the mechanistic origin of resting state is obscured by large-scale models' complexity, and a close structure-function relation is still an open problem. Thus, a realistic but simple enough description of relevant brain dynamics is needed. Here, we derived a dynamic mean field model that consistently summarizes the realistic dynamics of a detailed spiking and conductance-based synaptic large-scale network, in which connectivity is constrained by diffusion imaging data from human subjects. The dynamic mean field approximates the ensemble dynamics, whose temporal evolution is dominated by the longest time scale of the system. With this reduction, we demonstrated that FC emerges as structured linear fluctuations around a stable low firing activity state close to destabilization. Moreover, the model can be further and crucially simplified into a set of motion equations for statistical moments, providing a direct analytical link between anatomical structure, neural network dynamics, and FC. Our study suggests that FC arises from noise propagation and dynamical slowing down of fluctuations in an anatomically constrained dynamical system. Altogether, the reduction from spiking models to statistical moments presented here provides a new framework to explicitly understand the building up of FC through neuronal dynamics underpinned by anatomical connections and to drive hypotheses in task-evoked studies and for clinical applications.
Resumo:
Climate refers to the long-term course or condition of weather, usually over a time scale of decades and longer. It has been documented that our global climate is changing (IPCC 2007, Copenhagen Diagnosis 2009), and Iowa is no exception. In Iowa, statistically significant changes in our precipitation, streamflow, nighttime minimum temperatures, winter average temperatures, and dewpoint humidity readings have occurred during the past few decades. Iowans are already living with warmer winters, longer growing seasons, warmer nights, higher dew-point temperatures, increased humidity, greater annual streamflows, and more frequent severe precipitation events (Fig. 1-1) than were prevalent during the past 50 years. Some of the impacts of these changes could be construed as positive, and some are negative, particularly the tendency for greater precipitation events and flooding. In the near-term, we may expect these trends to continue as long as climate change is prolonged and exacerbated by increasing greenhouse gas emissions globally from the use of fossil fuels and fertilizers, the clearing of land, and agricultural and industrial emissions. This report documents the impacts of changing climate on Iowa during the past 50 years. It seeks to answer the question, “What are the impacts of climate change in Iowa that have been observed already?” And, “What are the effects on public health, our flora and fauna, agriculture, and the general economy of Iowa?”
Resumo:
During the last decade, the discovery that astrocytes possess a nonelectrical form of excitability (Ca21-excitability) that leads to the release of chemical transmitters, an activity called ''gliotransmission'', indicates that these cells may have additional important roles in brain function. Elucidating the stimulus-secretion coupling leading to the exocytic release of chemical transmitters (such as glutamate, Bezzi et al., Nature Neurosci, 2004) may therefore clarify i) whether astrocytes represent in full a new class of secretory cells in the brain and ii) whether they can participate to the fast brain signaling in the brain. Here by using a recently developed approach for studying vesicle recycling dynamics at synapses (Voglmaier et al., Neuron, 2006; Balaji and Ryan, PNAS, 2007) combined with epifluorescence and total internal reflection fluorescence (TIRF) imaging, we investigated the spatiotemporal characteristics of stimulus-secretion coupling leading glutamate exocytosis of synaptic-like microvesicles (SLMVs) in astrocytes. We performed the analysis at both the whole-cell and single-vesicle levels providing the first system for comparing exo-endocytic processes in astrocytes with those in neurons. Both the time course and modalities of secretion in astrocytes present more similarities to neurons then previously expected. We found that 1. the G-protein-coupled receptor (GPCR)-evoked exocytosis reached the maximum on a ms time scale and that 2. ER tubuli formed sub-micrometer domains beneath the plasma membrane in close proximity to exocytic vesicles, where fusion events were spatiotemporally correlated with fast Ca21 events.