934 resultados para Restricted maximum likelihood
Resumo:
A total of 46,089 individual monthly test-day (TD) milk yields (10 test-days), from 7,331 complete first lactations of Holstein cattle were analyzed. A standard multivariate analysis (MV), reduced rank analyses fitting the first 2, 3, and 4 genetic principal components (PC2, PC3, PC4), and analyses that fitted a factor analytic structure considering 2, 3, and 4 factors (FAS2, FAS3, FAS4), were carried out. The models included the random animal genetic effect and fixed effects of the contemporary groups (herd-year-month of test-day), age of cow (linear and quadratic effects), and days in milk (linear effect). The residual covariance matrix was assumed to have full rank. Moreover, 2 random regression models were applied. Variance components were estimated by restricted maximum likelihood method. The heritability estimates ranged from 0.11 to 0.24. The genetic correlation estimates between TD obtained with the PC2 model were higher than those obtained with the MV model, especially on adjacent test-days at the end of lactation close to unity. The results indicate that for the data considered in this study, only 2 principal components are required to summarize the bulk of genetic variation among the 10 traits.
Resumo:
Objectives: The purpose of this meta analysis was to examine the moderating impact of substance use disorder as inclusion/exclusion criterion as well as the percentage of racial/ethnic minorities on the strength of the alliance-outcome relationship in psychotherapy. It was hypothesized that the presence of a dsm axis i substance use disorders as a criterion and the presence of racial/ethnic minority as a psychosocial indicator are confounded client factors reducing the relationship between alliance and outcome. Methods: A random effects restricted maximum-likelihood estimator was used for omnibus and moderator models (k = 94). results: the presence of (a) substance use disorder and, (b) racial/ethnic minorities (overall and specific to african americans) partially moderated the alliance-outcome correlation. The percentage of substance use disorders and racial/ethnic minority status was highly correlated. Conclusions: Socio-cultural contextual variables should be considered along with dsm axis i diagnosis of substance use disorders in analyzing and interpreting mechanisms of change.
Resumo:
The use of group-randomized trials is particularly widespread in the evaluation of health care, educational, and screening strategies. Group-randomized trials represent a subset of a larger class of designs often labeled nested, hierarchical, or multilevel and are characterized by the randomization of intact social units or groups, rather than individuals. The application of random effects models to group-randomized trials requires the specification of fixed and random components of the model. The underlying assumption is usually that these random components are normally distributed. This research is intended to determine if the Type I error rate and power are affected when the assumption of normality for the random component representing the group effect is violated. ^ In this study, simulated data are used to examine the Type I error rate, power, bias and mean squared error of the estimates of the fixed effect and the observed intraclass correlation coefficient (ICC) when the random component representing the group effect possess distributions with non-normal characteristics, such as heavy tails or severe skewness. The simulated data are generated with various characteristics (e.g. number of schools per condition, number of students per school, and several within school ICCs) observed in most small, school-based, group-randomized trials. The analysis is carried out using SAS PROC MIXED, Version 6.12, with random effects specified in a random statement and restricted maximum likelihood (REML) estimation specified. The results from the non-normally distributed data are compared to the results obtained from the analysis of data with similar design characteristics but normally distributed random effects. ^ The results suggest that the violation of the normality assumption for the group component by a skewed or heavy-tailed distribution does not appear to influence the estimation of the fixed effect, Type I error, and power. Negative biases were detected when estimating the sample ICC and dramatically increased in magnitude as the true ICC increased. These biases were not as pronounced when the true ICC was within the range observed in most group-randomized trials (i.e. 0.00 to 0.05). The normally distributed group effect also resulted in bias ICC estimates when the true ICC was greater than 0.05. However, this may be a result of higher correlation within the data. ^
Resumo:
OBJECTIVE: Bell, Marcus, and Goodlad (2013) recently conducted a meta-analysis of randomized controlled additive trials and found that adding an additional component to an existing treatment vis-à-vis the existing treatment produced larger effect sizes on targeted outcomes at 6-months follow-up than at termination, an effect they labeled as a sleeper effect. One of the limitations with Bell et al.'s detection of the sleeper effect was that they did not conduct a statistical test of the size of the effect at follow-up versus termination. METHOD: To statistically test if the differences of effect sizes between the additive conditions and the control conditions at follow-up differed from those at termination, we used a restricted maximum-likelihood random-effect model with known variances to conduct a multilevel longitudinal meta-analysis (k = 30). RESULTS: Although the small effects at termination detected by Bell et al. were replicated (ds = 0.17-0.23), none of the analyses of growth from termination to follow-up produced statistically significant effects (ds < 0.08; p > .20), and when asymmetry was considered using trim-and-fill procedure or the studies after 2000 were analyzed, magnitude of the sleeper effect was negligible (d = 0.00). CONCLUSION: There is no empirical evidence to support the sleeper effect.
Resumo:
Arbuscular mycorrhizal (AM) fungi (Order Glomales, Class Zygomycetes) are a diverse group of soil fungi that form mutualistic associations with the roots of most species of higher plants. Despite intensive study over the past 25 years, the phylogenetic relationships among AM fungi, and thus many details of evolution of the symbiosis, remain unclear. Cladistic analysis was performed on fatty acid methyl ester (FAME) profiles of 15 species in Gigaspora and Scutellospora (family Gigasporaceae) by using a restricted maximum likelihood approach of continuous character data. Results were compared to a parsimony analysis of spore morphological characters of the same species. Only one tree was generated from each character set. Morphological and developmental data suggest that species with the simplest spore types are ancestral whereas those with complicated inner wall structures are derived. Spores of those species having a complex wall structure pass through stages of development identical to the mature stages of simpler spores, suggesting a pattern of classical Haeckelian recapitulation in evolution of spore characters. Analysis of FAME profiles supported this hypothesis when Glomus leptotichum was used as the outgroup. However, when Glomus etunicatum was chosen as the outgroup, the polarity of the entire tree was reversed. Our results suggest that FAME profiles contain useful information and provide independent criteria for generating phylogenetic hypotheses in AM fungi. The maximum likelihood approach to analyzing FAME profiles also may prove useful for many other groups of organisms in which profiles are empirically shown to be stable and heritable.
Resumo:
O objetivo dessa pesquisa foi avaliar aspectos genéticos que relacionados à produção in vitro de embriões na raça Guzerá. O primeiro estudo focou na estimação de (co) variâncias genéticas e fenotípicas em características relacionadas a produção de embriões e na detecção de possível associação com a idade ao primeiro parto (AFC). Foi detectada baixa e média herdabilidade para características relacionadas à produção de oócitos e embriões. Houve fraca associação genética entre características ligadas a reprodução artificial e a idade ao primeiro parto. O segundo estudo avaliou tendências genéticas e de endogamia em uma população Guzerá no Brasil. Doadoras e embriões produzidos in vitro foram considerados como duas subpopulações de forma a realizar comparações acerca das diferenças de variação anual genética e do coeficiente de endogamia. A tendência anual do coeficiente de endogamia (F) foi superior para a população geral, sendo detectado efeito quadrático. No entanto, a média de F para a sub- população de embriões foi maior do que na população geral e das doadoras. Foi observado ganho genético anual superior para a idade ao primeiro parto e para a produção de leite (305 dias) entre embriões produzidos in vitro do que entre doadoras ou entre a população geral. O terceiro estudo examinou os efeitos do coeficiente de endogamia da doadora, do reprodutor (usado na fertilização in vitro) e dos embriões sobre resultados de produção in vitro de embriões na raça Guzerá. Foi detectado efeito da endogamia da doadora e dos embriões sobre as características estudadas. O quarto (e último) estudo foi elaborado para comparar a adequação de modelos mistos lineares e generalizados sob método de Máxima Verossimilhança Restrita (REML) e sua adequação a variáveis discretas. Quatro modelos hierárquicos assumindo diferentes distribuições para dados de contagem encontrados no banco. Inferência foi realizada com base em diagnósticos de resíduo e comparação de razões entre componentes de variância para os modelos em cada variável. Modelos Poisson superaram tanto o modelo linear (com e sem transformação da variável) quanto binomial negativo à qualidade do ajuste e capacidade preditiva, apesar de claras diferenças observadas na distribuição das variáveis. Entre os modelos testados, a pior qualidade de ajuste foi obtida para o modelo linear mediante transformação logarítmica (Log10 X +1) da variável resposta.
Resumo:
A restricted maximum likelihood analysis applied to an animal model showed no significant differences (P > 0.05) in pH value of the longissimus dorsi measured at 24 h post-mortem (pH24) between high and low lines of Large White pigs selected over 4 years for post-weaning growth rate on restricted feeding. Genetic and phenotypic correlations between pH24 and production and carcass traits were estimated using all performance testing records combined with the pH24 measurements (5.05–7.02) on slaughtered animals. The estimate of heritability for pH24 was moderate (0.29 ± 0.18). Genetic correlations between pH24 and production or carcass composition traits, except for ultrasonic backfat (UBF), were not significantly different from zero. UBF had a moderate, positive genetic correlation with pH24 (0.24 ± 0.33). These estimates of genetic correlations affirmed that selection for increased growth rate on restricted feeding is likely to result in limited changes in pH24 and pork quality since the selection does not put a high emphasis on reduced fatness.
Resumo:
The objective of this study was to evaluate the association of visual scores of body structure, precocity and muscularity with production (body weight at 18 months and average daily gain) and reproductive (scrotal circumference) traits in Brahman cattle in order to determine the possible use of these scores as selection criteria to improve carcass quality. Covariance components were estimated by the restricted maximum likelihood method using an animal model that included contemporary group as fixed effect. A total of 1,116 observations of body structure, precocity and muscularity were used. Heritability was 0.39, 043 and 0.40 for body structure, precocity and muscularity, respectively. The genetic correlations were 0.79 between body structure and precocity, 0.87 between body structure and muscularity, and 0.91 between precocity and muscularity. The genetic correlations between visual scores and body weight at 18 months were positive (0.77, 0.57 and 0.59 for body structure, precocity and muscularity, respectively). Similar genetic correlations were observed between average daily gain and visual scores (0.60, 0.57 and 0.48, respectively), whereas the genetic correlations between scrotal circumference and these scores were low (0.13, 0.02, and 0.13). The results indicate that visual scores can be used as selection criteria in Brahman breeding programs. Favorable correlated responses should be seen in average daily gain and body weight at 18 months. However, no correlated response is expected for scrotal circumference.
Resumo:
Resumo: Registros de sobrevivência do nascimento ao desmame de 3846 crias de ovinos da raça Santa Inês foram analisados por modelos de reprodutor linear e não linear (modelo de limiar), para estimar componentes de variância e herdabilidade. Os modelos usados para sobrevivência, analisada como característica da cria, incluíram os efeitos fixos de sexo, da combinação tipo de nascimento-criação da cria e da idade da ovelha ao parto, efeito da covariável peso da cria ao nascer e efeitos aleatórios de reprodutor, da classe rebanho-ano-estação e do resíduo. Componentes de variância para o modelo linear foram estimados pelo método da máxima verossimilhança restrita (REML) e para o modelo não linear por uma aproximação da máxima verossimilhança marginal (MML), pelo programa CMMAT2. O coeficiente de herdabilidade (h2) estimado pelo modelo de limiar foi de 0,29, e pelo modelo linear, 0,14. A correlação de ordem de Spearman entre as capacidades de transmissão dos reprodutores, com base nos dois modelos foi de 0,96. As estimativas de h2 obtidas indicam a possibilidade de se obter, por seleção, ganho genético para sobrevivência. [Linear and nonlinear models in genetic analyses of lamb survival in the Santa Inês hair sheep breed]. Abstract: Records of 3,846 lambs survival from birth to weaning of Santa Inês hair sheep breed, were analyzed by linear and non linear sire models (threshold model) to estimate variance components and heritability (h2). The models that were used to analyze survival, considered in this study as a lamb trait, included the fixed effects of sex of the lamb, combination of type of birth-rearing of lamb, and age of ewe, birth weight of lamb as covariate, and random effects of sire, herd-year-season and residual. Variance components were obtained using restricted maximum likelihood (REML), in linear model and marginal maximum likelihood in threshold model through CMMAT2 program. Estimate of heritability (h2) obtained by threshold model was 0.29 and by linear model was 0.14. Rank correlation of Spearman, between sire solutions based on the two models was 0.96. The obtained estimates in this study indicate that it is possible to acquire genetic gain to survival by selection.
Resumo:
The aim of this study was to estimate genetic parameters to support the selection of bacuri progenies for a first cycle of recurrent selection, using the REML/BLUP (restricted maximum likelihood/best linear unbiased prediction) procedure to estimate the variance components and genotypic values. Were evaluated twelve variables in a total of 210 fruits from 39 different seed trees, from a field trial with an experimental design of incomplete blocks with clonal replies among subplots. The three variables related with the fruit development (weight, diameter, length) showed strong correlation, and where fruit length showed higher heritability and potential to be used for indirect selection. Among the 39 progenies evaluated in this study, five present potential to compose the next cycle of recurrent selection, due they hold good selection differential either to agrotechnological variables as to development of bacuri fruit.
Resumo:
The objective of this study was to evaluate the effects of inclusion or non-inclusion of short lactations and cow (CGG) and/or dam (DGG) genetic group on the genetic evaluation of 305-day milk yield (MY305), age at first calving (AFC), and first calving interval (FCI) of Girolando cows. Covariance components were estimated by the restricted maximum likelihood method in an animal model of single trait analyses. The heritability estimates for MY305, AFC, and FCI ranged from 0.23 to 0.29, 0.40 to 0.44, and 0.13 to 0.14, respectively, when short lactations were not included, and from 0.23 to 0.28, 0.39 to 0.43, and 0.13 to 0.14, respectively, when short lactations were included. The inclusion of short lactations caused little variation in the variance components and heritability estimates of traits, but their non-inclusion resulted in the re-ranking of animals. Models with CGG or DGG fixed effects had higher heritability estimates for all traits compared with models that consider these two effects simultaneously. We recommend using the model with fixed effects of CGG and inclusion of short lactations for the genetic evaluation of Girolando cattle.
Resumo:
Feed efficiency and carcass characteristics are late-measured traits. The detection of molecular markers associated with them can help breeding programs to select animals early in life, and to predict breeding values with high accuracy. The objective of this study was to identify polymorphisms in the functional and positional candidate gene NEUROD1 (neurogenic differentiation 1), and investigate their associations with production traits in reference families of Nelore cattle. A total of 585 steers were used, from 34 sires chosen to represent the variability of this breed. By sequencing 14 animals with extreme residual feed intake (RFI) values, seven single nucleotide polymorphisms (SNPs) in NEUROD1 were identified. The investigation of marker effects on the target traits RFI, backfat thickness (BFT), ribeye area (REA), average body weight (ABW), and metabolic body weight (MBW) was performed with a mixed model using the restricted maximum likelihood method. SNP1062, which changes cytosine for guanine, had no significant association with RFI or REA. However, we found an additive effect on ABW (P ≤ 0.05) and MBW (P ≤ 0.05), with an estimated allele substitution effect of -1.59 and -0.93 kg0.75, respectively. A dominant effect of this SNP for BFT was also found (P ≤ 0.010). Our results are the first that identify NEUROD1 as a candidate that affects BFT, ABW, and MBW. Once confirmed, the inclusion of this SNP in dense panels may improve the accuracy of genomic selection for these traits in Nelore beef cattle as this SNP is not currently represented on SNP chips.
Resumo:
Many traffic situations require drivers to cross or merge into a stream having higher priority. Gap acceptance theory enables us to model such processes to analyse traffic operation. This discussion demonstrated that numerical search fine tuned by statistical analysis can be used to determine the most likely critical gap for a sample of drivers, based on their largest rejected gap and accepted gap. This method shares some common features with the Maximum Likelihood Estimation technique (Troutbeck 1992) but lends itself well to contemporary analysis tools such as spreadsheet and is particularly analytically transparent. This method is considered not to bias estimation of critical gap due to very small rejected gaps or very large rejected gaps. However, it requires a sufficiently large sample that there is reasonable representation of largest rejected gap/accepted gap pairs within a fairly narrow highest likelihood search band.
Resumo:
Whether a statistician wants to complement a probability model for observed data with a prior distribution and carry out fully probabilistic inference, or base the inference only on the likelihood function, may be a fundamental question in theory, but in practice it may well be of less importance if the likelihood contains much more information than the prior. Maximum likelihood inference can be justified as a Gaussian approximation at the posterior mode, using flat priors. However, in situations where parametric assumptions in standard statistical models would be too rigid, more flexible model formulation, combined with fully probabilistic inference, can be achieved using hierarchical Bayesian parametrization. This work includes five articles, all of which apply probability modeling under various problems involving incomplete observation. Three of the papers apply maximum likelihood estimation and two of them hierarchical Bayesian modeling. Because maximum likelihood may be presented as a special case of Bayesian inference, but not the other way round, in the introductory part of this work we present a framework for probability-based inference using only Bayesian concepts. We also re-derive some results presented in the original articles using the toolbox equipped herein, to show that they are also justifiable under this more general framework. Here the assumption of exchangeability and de Finetti's representation theorem are applied repeatedly for justifying the use of standard parametric probability models with conditionally independent likelihood contributions. It is argued that this same reasoning can be applied also under sampling from a finite population. The main emphasis here is in probability-based inference under incomplete observation due to study design. This is illustrated using a generic two-phase cohort sampling design as an example. The alternative approaches presented for analysis of such a design are full likelihood, which utilizes all observed information, and conditional likelihood, which is restricted to a completely observed set, conditioning on the rule that generated that set. Conditional likelihood inference is also applied for a joint analysis of prevalence and incidence data, a situation subject to both left censoring and left truncation. Other topics covered are model uncertainty and causal inference using posterior predictive distributions. We formulate a non-parametric monotonic regression model for one or more covariates and a Bayesian estimation procedure, and apply the model in the context of optimal sequential treatment regimes, demonstrating that inference based on posterior predictive distributions is feasible also in this case.