898 resultados para Resíduos de pesticidas
Resumo:
The traditional processes for treatment of hazardous waste are questionable for it generates other wastes that adversely affect people s health. As an attempt to minimize these problems, it was developed a system for treatment of hazardous waste by thermal plasma, a more appropriate technology since it produces high temperatures, preventing the formation of toxic pollutants to human beings. The present work brings out a solution of automation for this plant. The system has local and remote monitoring resources to ensure the operators security as well as the process itself. A special attention was given to the control of the main reactor temperature of the plant as it is the place where the main processing occurs and because it presents a complex mathematical model. To this, it was employed cascaded controls based on Fuzzy logic. A process computer, with a particular man-machine interface (MMI), provides information and controls of the plant to the operator, including by Internet. A compact PLC module is in charge of the central element of management automation and plant control which receives information from sensors, and sends it to the MMI
Resumo:
O presente trabalho foi desenvolvido em casa de vegetação na Faculdade de Ciências Agronômicas UNESP, com o objetivo de determinar o efeito no crescimento inicial da soja e na formação do sistema radicular ao longo do tempo da presença de resíduos de sorgo-de-guiné e forrageiro. As unidades experimentais constituíram-se de tubos de PVC (rhizotron) com volume de terra de 16 dm-3. O delineamento experimental utilizado foi inteiramente casualizado num fatorial 2 x 3, sendo duas variedades de sorgo e três manejos dos resíduos de sorgo, com quatro repetições. A palha de sorgo-de-guiné na superfície do solo levou à diminuição na saturação do solo por bases. As palhas de sorgo de ambas as variedades, na superfície do solo, prejudicaram o crescimento da soja, o que também foi observado no caso das raízes do sorgo forrageiro. Resíduos culturais do sorgo-de-guiné, principalmente a palha, são os responsáveis por menores crescimentos das partes aérea e radicular da soja e, conseqüentemente, pelo menor acúmulo de nutrientes.
Resumo:
The marble and granite waste come from the process of mining of those ornamental rocks for use in the building industry. Brazil is one of the largest producers of blocks or finished products of ornamental rocks, extracting about 5.2 tons / year. The largest national producers are the states of Espírito Santo, Minas Gerais and Bahia which account for 80% of the Brazilian production. However, the waste total amount during processing of these blocks reaches 40% of the total. The use of the waste produced by this industry in white ceramics could be a form of disposition, because these materials, are thrownasa mud directly at decantation ponds, wastelands or in rivers, without any treatment. The present work has as main purpose to study the influence that reject of the ornamental rocks on the physical and mechanical properties of white ceramics. X-Ray characterizations of raw materials by were performed X-Ray fluorescence, X-Ray diffraction, granulometric, thermogravimetric and thermodiferencial analysis, five formulations were made (0, 10, 20, 30, 40% in granite weight) wich were burned at three temperatures: 1100°C, 1150°C and 1200ºC with 60 minutes of sorling time. After sintering, the samples were submitted to different analyser absorption of water, linear retraction, apparent porosity, apparent specific mass, flexival stronght, and scanning were obtained microscopy. Compatible technological properties within the limits demanded for the production of porcelainized stoneware
Resumo:
The production of red ceramic is an industrial activity that causes an intense impact. The manufacture of its products considerably increases the demand for natural resources, mainly with the extraction of raw material. The ceramic material produced generates waste, such as ash firewood and chamote. The residue from the beneficiation of kaolin is deposited in a poor, degrades the environment and contaminate water sources and soil, constituting in this manner, ecological disasters. The main objective of this work is to develop the formulation of a ceramic product consisting solely of industrial solid wastes, from ceramic tiles, (chamote) residue of kaolin and ash firewood. It is assumed that this product made in the laboratory can be used in coatings, wall and floor. The aim is to facilitate the replacement of the raw material of original composition of a ceramic body, for waste, while the process of production equal to the conventionally used, so that the properties of the product are reproduced. This work is characterized waste as its chemical composition, analysis of particle size, X-ray diffraction and thermal behavior. Several formulations were studied. The mass of waste was prepared by dry process, pressed to 25 MPa, and then burned in muffle type oven to 850, 950, 1050 and 1150 °C. The results showed that it is technically possible to produce porous tiles only with waste. It was found that the formulations of bodies play a key role in the properties of the final product, as well as the sintering temperature and heating rates. RN in the waste of kaolin is estimated at 15,000 t/month, about 3,000 gray t/month and chamote with 10 million pieces/month damaged. The presence of carbonates of calcium and magnesium at 1050 ° C results in an appropriate porosity and mechanical strength. The formulation M3JE, composed of 69% waste of kaolin, 7.7% and 23.3% of chamote of gray, became suitable for porous materials with the strength and absorption within the level of national and international standards
Resumo:
This study aimed to investigate the use of cane sugar ashes from small-scale stills of Eunápolis region, state of Bahia, in pottery mass that can be developed as porcelain stoneware. Bahia is the second largest producer of rum distillery in Brazil. In the production of rum is produced residue called bagasse, which is used to generate electricity in Power plants and in the distillery itself, generating ashes as residue, which is played in nature, causing environmental damage. We studied 5 (five) formulations of 0% 10% 20%, 30% and 40% by weight of the ash, without ignition and 3 (three) formulations of 10%, 20% and 30% with gray ash temperature of 1250ºC. The formulation at 0% by weight of ash was used for a comparison between the traditional mass of porcelain stoneware and the masses with the addition of ash calcined, replacing feldspar. The percentage by weight of kaolin and of Clay was kept the same, 30%, and all raw materials were derived from the state of Bahia. The samples were made in uniaxial array with dimensions of (60 x 20 x 5) mm and compressed to a pressure of 45 MPa. Assays were performed to characterize the raw by X-ray fluorescence, X-ray diffraction, ATD and ATG and Dilatometric analysis. The samples were sintered at temperatures of 1100°C, 1150°C, 1200°C and 1250°C, for the specimens with the ashes without ash and 1150° C and 1200° C for specimens with the gray level of calcined 60 minutes. and then we made a cooling ramp with the same rate of warming until reach ambient temperature. The sintered bodies were characterized by water absorption, porosity, linear shrinkage, bending strength and XRD of the fracture surface and the results analyzed. It was proven, after results of tests performed, that it is possible to use the ash residue of sugar cane bagasse on ceramic coating with the addition of up to 10% wt of the residue ash
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico
Resumo:
O objetivo principal desta revisão foi reunir informações a respeito da ação de compostos orgânicos produzidos por plantas na disponibilidade de nutrientes nos solos, principalmente sobre os cátions Ca, Mg e K e sobre o ânion fosfato. O sistema de cultivo adotado ocasiona mudanças nas propriedades químicas e físicas do solo, especialmente na disponibilidade de nutrientes e condicionamento físico do solo. Tem-se observado o acúmulo de nutrientes nas camadas superficiais do solo no sistema de semeadura direta, pelo não-revolvimento do solo e pela deposição de resíduos de culturas na superfície. Os ácidos orgânicos provenientes de plantas podem interagir com a fase sólida e ocupar os sítios de adsorção de nutrientes, competindo diretamente com eles e aumentando sua disponibilidade no solo. A adição de resíduos vegetais pode promover, antes da humificação, a elevação do pH, por promover complexação de H e Al com compostos do resíduo vegetal, deixando Ca, Mg e K mais livres em solução, o que pode ocasionar aumento na saturação da CTC por estes cátions de reação básica. Também é normal observar o aumento na disponibilidade de P no solo com a adição de resíduos vegetais, tanto pelo P presente no resíduo como por competição de compostos orgânicos dos resíduos pelos sítios de troca no solo. A persistência dos compostos orgânicos também é fator que tem grande interferência nos processos de sorção/dessorção de cátions e ânions, dependendo da atividade microbiana, da disponibilidade metabólica do substrato carbonado e da sorção aos colóides do solo.
Resumo:
The use of composite materials and alternative is being increased every day, as it becomes more widespread awareness that the use of renewable and not harmful to the environment is part of a new environmentally friendly model. Since its waste (primarily fiberglass) can not be easily recycled by the difficulty that still exists in this process, since they have two phases mixed, a polymeric matrix thermoset difficult to recycle because it is infusible and phase of fiber reinforcements. Thermoset matrix composites like Polyester + fiberglass pose a threat due to excessive discharge. Aiming to minimize this problem, aimed to reuse the composite Polyester + fiber glass, through the wastes obtained by the grinding of knifes and balls. These residues were incorporated into the new composite Polyester/Fiberglass for hot compression mold and compared tribological to composites with filler CaCO3, generally used as filler, targeting a partial replacement of CaCO3 by such waste. The composites were characterized by thermal analysis (TGA, DSC and DMA), by the surface integrity (roughness determination, contact angle and surface energy), mechanical properties (hardness) and tribological tests (wear and coefficient of dynamic friction) in order to evaluate the effect of loads and characterize these materials for applications that can take, in the tribological point of view since waste Polyester + fiberglass has great potential for replacement of CaCO3
Resumo:
With the current growth in consumption of industrialized products and the resulting increase in garbage production, their adequate disposal has become one of the greatest challenges of modern society. The use of industrial solid residues as fillers in composite materials is an idea that emerges aiming at investigating alternatives for reusing these residues, and, at the same time, developing materials with superior properties. In this work, the influence of the addition of sand, diatomite, and industrial residues of polyester and EVA (ethylene vinyl acetate), on the mechanical properties of polymer matrix composites, was studied. The main objective was to evaluate the mechanical properties of the materials with the addition of recycled residue fillers, and compare to those of the pure polyester resin. Composite specimens were fabricated and tested for the evaluation of the flexural properties and Charpy impact resistance. After the mechanical tests, the fracture surface of the specimens was analyzed by scanning electron microscopy (SEM). The results indicate that some of the composites with fillers presented greater Young s modulus than the pure resin; in particular composites made with sand and diatomite, where the increase in modulus was about 168 %. The composites with polyester and EVA presented Young s modulus lower than the resin. Both strength and maximum strain were reduced when fillers were added. The impact resistance was reduced in all composites with fillers when compared to the pure resin, with the exception of the composites with EVA, where an increase of about 6 % was observed. Based on the mechanical tests, microscopy analyses and the compatibility of fillers with the polyester resin, the use of industrial solid residues in composites may be viable, considering that for each type of filler there will be a specific application
Resumo:
The petroleum industry, in consequence of an intense activity of exploration and production, is responsible by great part of the generation of residues, which are considered toxic and pollutants to the environment. Among these, the oil sludge is found produced during the production, transportation and refine phases. This work had the purpose to develop a process to recovery the oil present in oil sludge, in order to use the recovered oil as fuel or return it to the refining plant. From the preliminary tests, were identified the most important independent variables, like: temperature, contact time, solvents and acid volumes. Initially, a series of parameters to characterize the oil sludge was determined to characterize its. A special extractor was projected to work with oily waste. Two experimental designs were applied: fractional factorial and Doehlert. The tests were carried out in batch process to the conditions of the experimental designs applied. The efficiency obtained in the oil extraction process was 70%, in average. Oil sludge is composed of 36,2% of oil, 16,8% of ash, 40% of water and 7% of volatile constituents. However, the statistical analysis showed that the quadratic model was not well fitted to the process with a relative low determination coefficient (60,6%). This occurred due to the complexity of the oil sludge. To obtain a model able to represent the experiments, the mathematical model was used, the so called artificial neural networks (RNA), which was generated, initially, with 2, 4, 5, 6, 7 and 8 neurons in the hidden layer, 64 experimental results and 10000 presentations (interactions). Lesser dispersions were verified between the experimental and calculated values using 4 neurons, regarding the proportion of experimental points and estimated parameters. The analysis of the average deviations of the test divided by the respective training showed up that 2150 presentations resulted in the best value parameters. For the new model, the determination coefficient was 87,5%, which is quite satisfactory for the studied system
Resumo:
As an auxiliary tool to combat hunger by decreasing the waste of food and contributing for improvement of life quality on the population, CEASA/RN has released from August/03 to August/05 the program MESA DA SOLIDARIEDADE. Despite of the positive results of this program, that has already distributed around 226 tons of food, there is still food being thrown in the trash as the deliver of the same food in its natural form would be a health risk to those who would consume it and only the correct processing of this food can make it edible. This work has as a goal the reuse of solid residues of vegetal origin generated by the CEASA/RN, through the Program MESA DA SOLIDARIEDADE and the characterization of the product obtained so it might be used as a mineral complement in the human diet. To the collecting of samples (from September until December /2004) it was developed a methodology having as a reference the daily needs of mineral salts for infants at the age of seven to ten. The sample was packed in plastic bags and transported in an ambient temperature to the laboratory where it was selected, weighted, disinfected, fractionated and dried to 70ºC in greenhouse. The dry sample was shredded and stored in bottles previously sterilized. The sample in nature was weighted in the same proportion of the dry sample and it was obtained a uniform mass in a domestic processor. The physical-chemical analyses were carried out in triplicate in the samples in nature and in the dry product, being analyzed: pH, humidity, acidity and soluble solids according to IAL (1985), mineral salts contents (Ca, K, Na, Mg, P and Fe) determined by spectrophotometry of Atomic Absorption, caloric power through a calorimetric bomb and presence of fecal traces and E. coli through the colilert method (APHA, 1995). During this period the dry food a base of vegetables presented on average 5,06% of humidity, 4,62 of pH, acidity of 2,73 mg of citric acid /100g of sample, 51,45ºBrix of soluble solids, 2.323,50mg of K/100g, 299,06mg of Ca/100g, 293mg of Na/100g, 154,66mg of Mg/100g, 269,62mg of P/100g, 6,38mg of Fe/100g, caloric power of 3,691Kcal/g (15,502KJ/g) and is free of contamination by fecal traces and E..coli. The dry food developed in this research presented satisfactory characteristics regarding to its conservation, possessing low calories, constituting itself a good source of potassium, magnesium, sodium and iron that can be utilized as a food complement of these minerals
Resumo:
Solid substrate cultivation (SSC) has become an efficient alternative towards rational use of agro industrial wastes and production of value-added products, mainly in developing countries. This work presents the production and functional application results of phenolic extracts obtained by solid substrate cultivation of pineapple (Ananas comosus L.) and guava (Psidium guajava L.) residues associated to soy flour and bioprocessed by Rhizopus oligosporus fungus. Two experimental groups were tested: (1) 9g of fruit residue and 1g of soy flour (A9 or G9); (2) 5g of fruit residue and 5g of soy flour (A5 or G5). After SSC, 100ml of distilled water was added to each Erlenmeyer flask containing 10g of bioprocessed material in order to obtain the phenolic extracts. Samples were taken every two days for total phenolic concentration (TPC) and antioxidant capacity evaluation by DPPH test during 12-day cultivation. The 2-day and 10-d ay extracts were selected and concentrated by ebullition until 1/10 of original volume was reached. After that, both non-concentrated and concentrated extracts were evaluated for their antimicrobial activity against Staphylococcus aureus and Salmonella enterica and a-amylase inhibitory capacity. It was observed an inverse relationship between total phenolic concentration (TPC) and antioxidant capacity during the cultivation. Besides that, the concentrated pineapple samples after two days were able to inhibit both pathogens tested, especially S. aureus. Guava concentrated extracts after 2 days showed expressive inhibition against S. enterica, but negative results against S. aureus growth. When it comes to a-amylase inhibition, A9 extracts after 2 days, both concentrated or not, completely inhibited enzyme activity. Similar behavior was observed for G9 samples, but only for concentrated samples. It was shown that concentration by ebullition positively affected the enzymatic inhibition of G9 and A9 samples, but on the other side, decreased antiamylase activity of A5 and G5 samples
Resumo:
Nowadays generation ethanol second, that t is obtained from fermentation of sugars of hydrolyses of cellulose, is gaining attention worldwide as a viable alternative to petroleum mainly for being a renewable resource. The increase of first generation ethanol production i.e. that obtained from sugar-cane molasses could lead to a reduction of lands sustainable for crops and food production. However, second generation ethanol needs technologic pathway for reduce the bottlenecks as production of enzymes to hydrolysis the cellulose to glucose i.e. the cellulases as well as the development of efficient biomass pretreatment and of low-cost. In this work Trichoderma reesei ATCC 2768 was cultivated under submerged fermentation to produce cellulases using as substrates waste of lignocellulosic material such as cashew apple bagasse as well as coconut bagasse with and without pretreatment. For pretreatment the bagasses were treated with 1 M NaOH and by explosion at high pressure. Enzyme production was carried out in shaker (temperature of 27ºC, 150 rpm and initial medium pH of 4.8). Results showed that T.reesei ATCC 2768 showed the higher cellulase production when the cashew apple bagasse was treated with 1M NaOH (2.160 UI/mL of CMCase and 0.215 UI/mL of FPase), in which the conversion of cellulose, in terms of total reducing sugars, was of 98.38%, when compared to pretreatment by explosion at high pressure (0.853 UI/mL of CMCase and 0.172 UI/mL of Fpase) showing a conversion of 47.39% of total reducing sugars. Cellulase production is lower for the medium containing coconut bagasse treated with 1M NaOH (0.480 UI/mL of CMcase and 0.073 UI/mL of FPase), giving a conversion of 49.5% in terms of total reducing sugars. Cashew apple bagasse without pretreatment showed cellulase activities lower (0.535 UI/mL of CMCase and 0,152 UI/mL of FPase) then pretreated bagasse while the coconut bagasse without pretreatment did not show any enzymatic activity. Maximum cell concentration was obtained using cashew nut bagasse as well as coconut shell bagasse treated with 1M NaOH, with 2.92 g/L and 1.97 g/L, respectively. These were higher than for the experiments in which the substrates were treated by explosion at high pressure, 1.93 g/L and 1.17 g/L. Cashew apple is a potential inducer for cellulolytic enzymes synthysis showing better results than coconut bagasse. Pretreatment improves the process for the cellulolytic enzyme production
Resumo:
Cellulolytic enzymatic broth by Trichoderma reesei ATCC 2768 cultived in shaker using cashew apple bagasse and coconut shell bagasse, as substrate for fermentation, was used to investigate the enzymatic hydrolysis of these substrates after pre-treatment with 1 M NaOH, wet-oxidation as well as a combination of these treatments. Hydrolysis runs were carried at 125 rpm, 50ºC and initial pH of 4.8 for 108 hours. Enzymatic broth produced using cashew apple bagasse treated with 1M NaOH (1.337 UI/mL CMCase and 0.074 UI/mL FPase), showed after the hydrolysis an initial of 0.094 g of reducing sugar/g of substrate.h with 96% yield of total reducing sugars while for the coconut shell bagasse treated using the alkaline process (0.640 UI/mL CMCase and 0.070 UI/mL FPase) exhibited an initial hydrolysis velocity of 0.025 g of reducing sugar/g of substrate.h with 48% yield of total reducing sugars. For the treatment with wet-oxidation using cashew apple bagasse as substrate enzymatic broth (0.547 UI/mL CMCase) exhibited an initial hydrolysis velocity of 0.014 g of reducing sugars/g of substrate.h with a lower yield about 89% of total reducing sugars compared to the alkaline treatment. Enzymatic broth produced using coconut shell treated by wet-oxidation showed an initial hydrolysis velocity of 0.029 g of reducing sugar/g of substrate.h with 91% yield. However, when the combination of these two treatments were used it was obtained an enzymatic broth of 1.154 UI/mL CMCase and 0.107 FPase for the cashew apple bagasse as well as 0.538 UI/mL CMCase and 0,013 UI/mL de FPase for the coconut shell bagasse. After hydrolysis, initial velocity was 0.029 g of reducing sugar/g of substrate.h. with 94% yield for the cashew apple bagasse and 0.018 g de reducing sugar/g of substrate.h with 69% yield for coconut shell bagasse. Preliminary treatment improves residues digestibility showing good yields after hydrolysis. In this case, cellulose from the residue can be converted into glucose by cellulolytic enzymes that can be used for ethanol production
Resumo:
A disponibilidade do Si pelo silicato de Ca poderá aumentar a formação de polifenóis, os quais tornariam possível a maior persistência dos resíduos culturais em superfície. Com esse intuito, procurou-se avaliar a ação do silicato e do calcário na decomposição de diferentes resíduos culturais e a liberação de nutrientes para o desenvolvimento do feijoeiro. O delineamento experimental empregado foi o de blocos casualizados em esquema fatorial 3 x 5, com quatro repetições. Os tratamentos foram constituídos de três espécies de plantas de cobertura: milheto (Pennisetum americanum), braquiária (Brachiaria brizantha) e guandu-anão (Cajanus cajan L.) e cinco níveis proporcionais de silicato de cálcio: 0, 25, 50, 75 e 100 %, aplicado nas doses crescentes de 0, 2,31, 4,63, 6,96 e 9,27 g/vaso, respectivamente, balanceadas com carbonato de cálcio e carbonato de magnésio, de forma que as quantidades de Ca e Mg em cada tratamento fossem iguais, calculados para atingir uma saturação por bases no solo de 70 %. A aplicação de silicato de Ca não interferiu na decomposição do resíduo cultural de braquiária, guandu e milheto. O teor de Mg disponível no solo foi reduzido pela aplicação de silicato de Ca, o que induz menor absorção pelas plantas de cobertura e eventual disponibilização após sua decomposição. O crescimento do feijoeiro foi favorecido pela aplicação de silicato de Ca, sendo as doses de 2,31 e 6,95 g/vaso de silicato com o resíduo cultural de braquiária os tratamentos que apresentaram maior eficiência.