957 resultados para Ree Fractionation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this study was to prospectively examine the effectiveness and tolerability of a simple radiotherapy technique for the palliation of symptomatic liver metastases. Twenty-eight patients with symptomatic liver metastases were enrolled from seven centres, and received targeted (partial or whole) liver irradiation consisting of 10 Gy in two fractions over 2 days. Symptoms at baseline were hepatic pain (27 patients), abdominal distension (19), night sweats (12), nausea (18) and vomiting (eight). Twenty-two patients (76%) had failed previous treatment with chemotherapy, hormonal therapy and/or high-dose steroids. Symptoms and potential toxicities were prospectively assessed at the time of treatment, then 2, 6 and 10 weeks later. Individual symptom response rates were 53−66% at 2 weeks. Partial or complete global symptomatic responses were noted in 15 patients (54%) overall. The treatment was well tolerated with two patients (7%) experiencing grade 3 toxicity (one vomiting and one diarrhoea); however, four patients reported temporary worsening of pain shortly after treatment. This simple and well-tolerated treatment achieves useful palliation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rare earth element and yttrium (REE+Y) concentrations were determined in 49 Late Devonian reefal carbonates from the Lennard Shelf, Canning Basin, Western Australia. Shale-normalized (SN) REE+Y patterns of the Late Devonian samples display features consistent with the geochemistry of well-oxygenated, shallow seawater. A variety of different ancient limestone components, including microbialites, some skeletal carbonates (stromatoporoids), and cements, record seawater-like REE+Y signatures. Contamination associated with phosphate, Fe-oxides and shale was tested quantitatively, and can be discounted as the source of the REE+Y patterns. Co-occurring carbonate components that presumably precipitated from the same seawater have different relative REE concentrations, but consistent REE+Y patterns. Clean Devonian early marine cements (n = 3) display REE+Y signatures most like that of modern open ocean seawater and the highest Y/Ho ratios (e.g., 59) and greatest light REE (LREE) depletion (average Nd-SN/Yb-SN = 0.413, SD = 0.076). However, synsedimentary cements have the lowest REE concentrations (e.g., 405 ppb). Non-contaminated Devonian microbialite samples containing a mixture of the calcimicrobe Renalcis and micritic thrombolite aggregates in early marine cement (n = 11) have the highest relative REE concentrations of tested carbonates (average total REE = 11.3 ppm). Stromatoporoid skeletons, unlike modern corals, algae and molluscs, also contain well-developed, seawater-like REE patterns. Samples from an estuarine fringing reef have very different REE+Y patterns with LREE enrichment (Nd-SN/Yb-SN > 1), possibly reflecting inclusion of estuarine colloidal material that contained preferentially scavenged LREE from a nearby riverine input source. Hence, Devonian limestones provide a proxy for marine REE geochemistry and allow the differentiation of co-occurring water masses on the ancient Lennard Shelf. Although appropriate partition coefficients for quantification of Devonian seawater REE concentrations from out data are unknown, hypothetical Devonian Canning Basin seawater REE patterns were obtained with coefficients derived from modern natural proxies and experimental values. Resulting Devonian seawater patterns are slightly enriched in LREE compared to most modem seawaters and suggest higher overall REE concentrations, but are very similar to seawaters from regions with high terrigenous inputs. Our results suggest that most limestones should record important aspects of the REE geochemistry of the waters in which they precipitated, provided they are relatively free of terrigenous contamination and major diagenetic alteration from fluids with high, non-seawater-like REE contents. Hence, we expect that many other ancient limestones will serve as seawater REE proxies, and thereby provide information on paleoceanography, paleogeography and geochemical evolution of the oceans. Copyright (C) 2004 Elsevier Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The oldest known bona fide succession of elastic metasediments Occurs in the Isua Greenstone Belt. SW Greenland and consists of a variety of mica schists and rare metaconglomerates. The metasediments are in direct contact with a felsic metavolcanic lithology that has previously been dated to 3.71 Ga. Based on trace element geochemical data for 30 metasediments, we selected the six samples with highest Zr concentrations for zircon extraction. These samples all yielded very few or no zircon, Those extracted from mica schists yielded ion probe U/Pb ages between 3.70 and 3,71 Ga. One metaconglomerate sample yielded just a single zircon of 3.74 Ga age. The mica schist hosted zircons have U/Pb ages. Th/U ratios, REE patterns and Eu anomalies indistinguishable from zircon in the adjacent 3.71 Ga felsic metavolcanic unit. Trace element modelling requires the bulk of material in the metasediments to be derived from variably weathered mafic lithologies but some metasediments contain substantial contribution from more evolved source lithologies. The paucity of zircon in the mica schists is thus explained by incorporation of material from largely zircon-free volcanic lithologies. The absence of older zircon in the mica schists and the preponderance of mafic source material imply intense, mainly basaltic resurfacing of the early Earth. The implications of this process are discussed, Thermal considerations suggest that horizontal growth of Hadean crust by addition of mafic ultramafic lavas must have triggered self-reorganisation of the protocrust by remelting. Reworking oft Hadean crust may have been aided by burial of hydrated (weathered) metabasalt due to semi-continuous addition of new voluminous basalt Outpouring,;, This process Causes a bias towards eruption of Zr-saturated partial melts at the surface with O-isotope corn posit ion,, potentially different from the mantle. The oldest zircons hosted in sediments would have been buried to substantial depth or formed in plutons that crystallised at some depth from which it took hundreds of millions of years for them to be exhumed and incorporated into much younger sediments. (C) 2005 Elsevier B.V.All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Complete rare earth element (except Eu) and Y concentrations from the estuarine mixing zone (salinity =0.2 to 33) of Elimbah Creek, Queensland, Australia, were measured by quadrupole ICP-MS without preconcentration. High sampling density in the low salinity regime along with high quality data allow accurate tracing of the development of the typical marine rare earth element anomalies as well as Y/Ho fractionation. Over the entire estuary, the rare earth elements are strongly removed relative to a freshwater endmember (60-80% removal). This large overall removal occurs despite a strong remineralisation peak (190% for La, 130% for Y relative to the freshwater endmember) in the mid-salinity zone. Removal and remineralisation are accompanied by fractionation of the original (freshwater) rare earth element pattern, resulting in light rare earth element depletion. Estuarine fractionation generates a large positive La anomaly and a superchondritic Y/Ho ratio. Conversely, we observe no evidence to support the generation of the negative Ce anomaly in the estuary. With the exception of Ce, the typical marine rare earth element features can thus be attributed to estuarine mixing processes. The persistence of these features in hydrogenous sediments for at least 3.71 Ga highlights the importance of estuarine processes for marine chemistry on geological timescales. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Efficient insulin action requires spatial and temporal coordination of signaling cascades. The prototypical insulin receptor substrate, IRS-1 plays a central role in insulin signaling. By subcellular fractionation IRS-1 is enriched in a particulate fraction, termed the high speed pellet (HSP), and its redistribution from this fraction is associated with signal attenuation and insulin resistance. Anecdotal evidence suggests the cytoskeleton may underpin the localization of IRS-1 to the HSP. In the present study we have taken a systematic approach to examine whether the cytoskeleton contributes to the subcellular fractionation properties and function of IRS-1. By standard microscopy or immunoprecipitation we were unable to detect evidence to support a specific interaction between IRS-1 and the major cytoskeletal components actin (microfilaments), vimentin (intermediate filaments), and tubulin (microtubules) in 3T3-L1 adipocytes or in CHO.IR.IRS-1 cells. Pharmacological disruption of microfilaments and microtubules, individually or in combination, was without effect on the subcellular distribution of IRS-1 or insulin-stimulated tyrosine phosphorylation in either cell type. Phosphorylation of Akt was modestly reduced (20-35%) in 3T3-L1 adipocytes but not in CHO.IR.IRS-1 cells. In cells lacking intermediate filaments (Vim(-/-)) IRS-1 expression, distribution and insulin-stimulated phosphorylation appeared normal. Even after depolymerisation of microfilaments and microtubules, insulin-stimulated phosphorylation of IRS-1 and Akt were maintained in Vim-/- cells. Taken together these data indicate that the characteristic subcellular fractionation properties and function of IRS-1 are unlikely to be mediated by cytoskeletal networks and that proximal insulin signaling does not require an intact cytoskeleton. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A review is given of general chromatographic theory, the factors affecting the performance of chromatographi c columns, and aspects of scale-up of the chromatographic process. The theory of gel permeation chromatography (g. p. c.) is received, and the results of an experimental study to optimize the performance of an analytical g.p.c. system are reported. The design and construction of a novel sequential continuous chromatographic refining unit (SCCR3), for continuous liquid-liquid chromatography applications, is described. Counter-current operation is simulated by sequencing a system of inlet and outlet port functions around a connected series of fixed, 5.1 cm internal diameter x 70 cm long, glass columns. The number of columns may be varied, and, during this research, a series of either twenty or ten columns was used. Operation of the unit for continuous fractionation of a dextran polymer (M. W. - 30,000) by g.p.c. is reported using 200-400 µm diameter porous silica beads (Spherosil XOB07S) as packing, and distilled water for the mobile phase. The effects of feed concentration, feed flow rate, and mobile and stationary phase flow rates have been investigated, by means of both product, and on-column, concentrations and molecular weight distributions. The ability to operate the unit successfully at on-column concentrations as high as 20% w/v dextran has been demonstrated, and removal of both high and low molecular weight ends of a polymer feed distribution, to produce products meeting commercial specifications, has been achieved. Equivalent throughputs have been as high as 2.8 tonnes per annum for ten columns, based on continuous operation for 8000 hours per annum. A concentration dependence of the equilibrium distribution coefficient, KD observed during continuous fractionation studies, is related to evidence in the literature and experimental results obtained on a small-scale batch column. Theoretical treatments of the counter-current chromatographic process are outlined, and a preliminary computer simulation of the SCCR3 unit t is presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A review of ultrafiltration (UF) theory and equipment has been made. Dextran is fractionated industrially by ethanol precipitation, which is a high energy intensive process. The aims of this work were to investigate the fractionation of dextran using UF and to compare the efficiency and costs of UF fractionation with ethanol fractionation. This work is the continuation of research conducted at Aston, which was concerned with the fractionation of dextran using gel permeation chromatography (GPC) and hollow fibre UF membranes supplied by Amicon Ltd. Initial laboratory work centred on determining the most efficient make and configuration of membrane. UF membranes of the Millipore cassette configuration, and the DDS flat-sheet configuration, were examined for the fracationation of low molecular weight (MW) dextran. When compared to Amicon membranes, these membranes were found to be inferior. DDS membranes of 25 000 and 50 000 MW cut-offs were shown to be capable of fractionating high MW dextran with the same efficiency as GPC. The Amicon membranes had an efficiency comparable to that of ethanol fractionation. To increase this efficiency a theoretical UF membrane cascade was adopted to utilize favourable characteristics encountered in batch mode membrane experiments. The four stage cascade used recycled permeates in a counter- current direction to retentate flow, and was operated 24 hours per day controlled by a computer. Using 5 000 MW cut-off membranes the cascade improved the batch efficiency by at least 10% for a fractionation at 6 000 MW. Economic comparisons of ethanol fractionation, combined GPC and UF fractionation, and UF fractionation of dextran were undertaken. On an economic basis GPC was the best method for high MW dextran fractionation. When compared with a plant producing 100 tonnes pa of clinical dextran, by ethanol fractionation, a combined GPC and UF cascade fractionation could produce savings on operating costs and an increased dextran yield of 5%.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The oxygen isotopic composition of plant cellulose is commonly used for the interpretations of climate, ecophysiology and dendrochronology in both modern and palaeoenvironments. Further applications of this analytical tool depends on our in-depth knowledge of the isotopic fractionations associated with the biochemical pathways leading to cellulose. Here, we test two important assumptions regarding isotopic effects resulting from the location of oxygen in the carbohydrate moiety and the biosynthetic pathway towards cellulose synthesis. We show that the oxygen isotopic fractionation of the oxygen attached to carbon 2 of the glucose moieties differs from the average fractionation of the oxygens attached to carbons 3–6 from cellulose by at least 9%, for cellulose synthesized within seedlings of two different species (Triticum aestivum L. and Ricinus communis L.). The fractionation for a given oxygen in cellulose synthesized by the Triticum seedlings, which have starch as their primary carbon source, is different than the corresponding fractionation in Ricinus seedlings, within which lipids are the primary carbon source. This observation shows that the biosynthetic pathway towards cellulose affects oxygen isotope partitioning, a fact heretofore undemonstrated. Our findings may explain the species-dependent variability in the overall oxygen isotope fractionation during cellulose synthesis, and may provide much-needed insight for palaeoclimate reconstruction using fossil cellulose.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stable-isotope values of a scalloped hammerhead Sphyrna lewini and blacktip shark Carcharhinus limbatus and their respective embryos were analysed. Embryos of both species were enriched in δ15N compared to their mothers (0·82 and 0·88‰, respectively), but fractionation of δ13C varied. Embryonic S. lewini were enriched (1·00‰) in δ13C while C. limbatus were depleted (0·27‰) relative to their mothers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ferromanganese concretions from the Svalbard shelf in the Barents Sea show slightly convex shale-normalized REE patterns with no Eu anomalies. Concretions from the Gulf of Bothnia, northern part of the Baltic Sea, exhibit an enrichment of light REE and negative Eu anomalies. This difference is interpreted as a consequence of different conveyor mechanisms of the REE to the sediment. It is suggested that dissolving biogenic debris contributes to the convex pattern obtained in the Barents Sea, whereas an inorganic suspended fraction with scavenged REE is the main carrier in the Gulf of Bothnia. During oxic diagenesis in the sediment, the scavenged REE are set free into the porewater and contribute to the distribution pattern in concretions found in the Gulf of Bothnia. Small Mn-rich spheroidal concretions are enriched two to five times in REE compared to average shale, whereas Mn-poor flat concretions are low in REE. Specific surface area of the concretion and the depth of burial in the oxidized surface sediment are two factors that strongly affect the enrichment of the REE. Weak Ce anomalies are present in the analysed concretions and a redox level dependence is seen.