972 resultados para Reclaimed asphalt pavements
Resumo:
The crack and seat (C & S) method of rehabilitating concrete pavements has been proposed to reduce the incidence of reflective cracking in asphalt overlays. These cracked pieces help reduce the thermal effects on lateral joint movement while the seating of slab pieces reduces vertical movement. This 1986 project demonstrated that a 0.6 m x 0.9 m (2 ft x 3 ft) cracking pattern was optimal to retard reflective cracking in an asphalt overlay. The best performance among three C & S test sections was section 4 with a 0.6 m x 0.9 m (2 ft x 3 ft) cracking pattern and 7.6 cm (3 in) overlay. Structural ratings determined from the Road Rater™ indicated little difference between each C & S section with varying AC thicknesses and crack spacings. Although reflection cracking is reduced in the early years after construction, the effectiveness of the C & S method diminishes over time.
Resumo:
Safety is an important aspect of highway design. Texture and frictional properties are important characteristics in providing safe roadways. Longevity of desirable frictional properties is highly dependent on the aggregate within asphalt pavement. Iowa unfortunately has areas of the State where the locally available aggregate will not give long lasting desirable frictional properties. Iowa has utilized sprinkle treatments to improve the safety of many new asphalt concrete pavements.
Resumo:
For the past several year Kossuth County has had a scheduled maintenance program of bituminous seal coating. This program has been used to maintain the 467 miles of asphaltic concrete surfaced roads in Kossuth County. Since most of the experience that Kossuth County had in seal coating was with cutback asphalt, it was decided to include the use of emulsified asphalt in Kossuth County's 1980 seal coat program. Federal Demonstration Project Funds were requested from the Federal Highway Administration to study the use of emulsified asphalt and funding was granted under Demonstration Project No. 55,:Asphalt Emulsions for Highway Construction." Items studied were design and construction procedure cost of alternate material, energy consumption and environmental considerations. A construction contract was awarded to Everds Brothers, Inc. of Algona, Iowa, on July 1, 1980. There were four bidders on the 54.5 miles of seal coating that was let. A map showing the location of the seal coating projects is shown in Appendix A, and a copy of the contract is shown in Appendix B. The contractor started the project on July 11, 1980 and completed the project on August 1, 1980. Construction inspection and follow-up inspections of the project were conducted by personnel of the Kossuth County Engineer's Office and testing of the materials, friction testing and road rater testing were conducted by the Material's Department of the Iowa Department of Transportation.
Resumo:
In this paper are described the results of a research project that had the objective of developing construction procedures for restoring load transfer in existing jointed concrete pavements and of evaluating the effectiveness of the restoration methods. A total of 28 test sections with various load transfer devices were placed. The devices include split pipe, figure eight, vee, double vee, and dowel bars. Patching materials used on the project included three types of fast-setting grouts, three brands of polymer concrete, and plain portland cement concrete. The number and spacing of the devices and dowel bars were also variables in the project. Dowel bars and double vee devices were used on the major portion of the project. Performance evaluations were based on deflection tests conducted with a 20,000-lb axle load. Horizontal joint movement measurements and visual observations were also made. The short-term performance data indicate good results with the dowel bar installations regardless of patching materials. The sections with split pipe, figure eight, and vee devices failed in bond during the first winter cycle. The results with the double vee sections indicate the importance of the patching material to the success or failure of the load transfer system: some sections are performing well and other sections are performing poorly with double vee devices. Horizontal joint movement measurements indicate that neither the dowel bars nor the double vee devices are restricting joint movement.
Resumo:
Major highway concrete pavements in Iowa have exhibited premature deterioration attributed to effects of ettringite formation, alkali-silica expansive reactions, and to frost attack, or some combination of them. These pavements were constructed in the mid- 1980s as non-reinforced, dual-lane, roads ranging in thickness between 200 mm and 300 mm, with skewed joints reinforced with dowels. Deterioration was initially recognized with a darkening of joint regions, which occurred for some pavements as soon as four years after construction. Pavement condition ranges from severe damage to none, and there appeared to be no unequivocal materials or processing variables correlated with failure. Based upon visual examinations, petrographic evaluation, and application of materials models, the deterioration of concrete highway pavements in Iowa appear related to a freeze-thaw failure of the coarse aggregate and the mortar. Crack patterns sub-parallel to the concrete surface transecting the mortar fraction and the coarse aggregate are indicative of freeze-thaw damage of both the mortar and aggregate. The entrained air void system was marginal to substandard, and filling of some of the finer-sized voids by ettringite appears to have further degraded the air void system. The formation of secondary ettringite within the entrained air voids probably reflects a relatively high degree of concrete saturation causing the smaller voids to be filled with pore solution when the concrete freezes. Alkali-silica reaction (ASR) affects some quartz and shale in the fine aggregate, but is not considered to be a significant cause of the deterioration. Delayed ettringite formation was not deemed likely as no evidence of a uniform paste expansion was observed. The lack of field-observed expansion is also evidence against the ASR and DEF modes of deterioration. The utilization of fly ash does not appear to have affected the deterioration as all pavements with or without fly ash exhibiting substantial damage also exhibit significant filling of the entrained air void system, and specimens containing fly ash from sound pavements do not have significant filling. The influence of the mixture design, mixing, and placing must be evaluated with respect to development of an adequate entrained air void system, concrete homogeneity, longterm drying shrinkage, and microcracking. A high-sand mix may have contributed to the difficult mixture characteristics noted upon placement and exacerbate concrete heterogeneity problems, difficulty in developing an adequate entrained air void system, poor consolidation potential, and increased drying shrinkage and cracking. Finally, the availability of moisture must also be considered, as the secondary precipitation of ettringite in entrained air voids indicates they were at least partially filled with pore solution at times. Water availability at the base of the slabs, in joints, and cracks may have provided a means for absorbing water to a point of critical saturation.
Resumo:
During the harvest season in Iowa, it is common to have single axle loads on secondary roads and bridges that are excessive (typical examples are grain carts) and well beyond normal load limits. Even though these excessive loads occur only during a short time of the year, they may do significant damage to pavements and bridges. In addition, the safety of some bridges may be compromised because of the excessive loads, and sometimes there may be little indication to the users that damage may be imminent. At this time there are no Iowa laws regulating axle loads allowed for agricultural equipment. This study looks at the potential problems this may cause on secondary roads and timber stringer bridges. Both highway pavement and timber bridges are evaluated in this report. A section (panel) of Iowa PCC paved county road was chosen to study the effects of heavy agricultural loads on pavements. Instrumentation was applied to the panel and a heavily loaded grain cart was rolled across. The collected data were analyzed for any indication of excessive stresses of the concrete. The second study, concerning excessive loads on timber stringer bridges, was conducted in the laboratory. Four bridge sections were constructed and tested. Two of the sections contained five stringers and two sections had three stringers. Timber for the bridges came from a dismantled bridge, and deck panels were cut from new stock. All timber was treated with creosote. A hydraulic load was applied at the deck mid-span using a foot print representing a tire from a typical grain cart. Force was applied until failure of the system resulted. The collected data were evaluated to provide indications of load distribution and for comparison with expected wheel loads for a typical heavily loaded single axle grain cart. Results of the pavement tests showed that the potential of over-stressing the pavement is a possibility. Even though most of the tension stress levels recorded were below the rupture strength of the concrete, there were a few instances where the indicated tension stress level exceeded the concrete rupture strength. Results of the bridge tests showed that when the static ultimate load capacity of the timber stringer bridge sections was reached, there was sudden loss of capacity. Prior to reaching this ultimate capacity, the load sharing between the stringers was very uniform. The failure was characterized by loss of flexural capacity of the stringers. In all tests, the ultimate test load exceeded the wheel load that would be applied by an 875 bushel single axle grain cart.
Resumo:
This project utilized information from ground penetrating radar (GPR) and visual inspection via the pavement profile scanner (PPS) in proof-of-concept trials. GPR tests were carried out on a variety of portland cement concrete pavements and laboratory concrete specimens. Results indicated that the higher frequency GPR antennas were capable of detecting subsurface distress in two of the three pavement sites investigated. However, the GPR systems failed to detect distress in one pavement site that exhibited extensive cracking. Laboratory experiments indicated that moisture conditions in the cracked pavement probably explain the failure. Accurate surveys need to account for moisture in the pavement slab. Importantly, however, once the pavement site exhibits severe surface cracking, there is little need for GPR, which is primarily used to detect distress that is not observed visually. Two visual inspections were also conducted for this study by personnel from Mandli Communications, Inc., and the Iowa Department of Transportation (DOT). The surveys were conducted using an Iowa DOT video log van that Mandli had fitted with additional equipment. The first survey was an extended demonstration of the PPS system. The second survey utilized the PPS with a downward imaging system that provided high-resolution pavement images. Experimental difficulties occurred during both studies; however, enough information was extracted to consider both surveys successful in identifying pavement surface distress. The results obtained from both GPR testing and visual inspections were helpful in identifying sites that exhibited materials-related distress, and both were considered to have passed the proof-of-concept trials. However, neither method can currently diagnose materials-related distress. Both techniques only detected the symptoms of materials-related distress; the actual diagnosis still relied on coring and subsequent petrographic examination. Both technologies are currently in rapid development, and the limitations may be overcome as the technologies advance and mature.
Resumo:
In conventional construction practices, a longitudinal joint is sawed in a PCC (Portland Cement Concrete) pavement to control concrete shrinkage cracking between two lanes of traffic. Sawing a joint in hardened concrete is an expensive and time consuming operation. The longitudinal joint is not a working joint (in comparison to a transverse joint) as it is typically tied with a tie bar at 30 inch spacing. The open joint reservoir, left by the saw blade, typically is filled or sealed with a durable crack sealant to keep incompressibles and water from getting into the joint reservoir. An experimental joint forming knife has been developed. It is installed under the paving machine to form the longitudinal joint in the wet concrete as a part of the paving process. Through this research method, forming a very narrow longitudinal joint during the paving process, two conventional paving operations can be eliminated. Joint forming eliminates the need of the joint sawing operation in the hard concrete, and as the joint that is formed does not leave a wide-open reservoir, but only a hairline crack, it does not need the joint filling or sealing operation. Therefore, the two conventional longitudinal joint sawing and sealing operations are both being eliminated by this innovation. A laboratory scale prototype joint forming knife was built and tested, initially forming joints in small concrete beams. The results were positive so the method was proposed for field testing. Initial field tests were done in the construction season of 2001, limited to one paving contractor. A number of modifications were made to the knife throughout the field tests. About 3000 feet of longitudinal joint was formed in 2001. Additional testing was done in the 2002 construction season, working with the same contractor. About 150,000 feet of longitudinal joint was formed in 2002. Evaluations of the formed joints were done to determine longitudinal joint hairline crack development rate and appearance. Additional tests will be done in the next construction season to improve or perfect the longitudinal joint forming technique.
Resumo:
High-speed non-contact laser profilers have become the standard testing equipment for pavement management ride quality testing. The same technology used in the high-speed profilers is now being used in lightweight profilers for construction smoothness testing. The lightweight profilers have many advantages over the California 25-ft profilograph. Despite the many advantages of the lightweight profilers, there is resistance from the contracting industry toward eliminating the 25-ft profilograph for construction ride testing. One way to reduce or overcome the resistance is to evaluate and demonstrate the advantages/disadvantages of the lightweight profiler in actual field use in Iowa. The objective of the study was to purchase a lightweight profiler and to evaluate its suitability for construction smoothness quality verification and quality acceptance on Iowa projects. A lightweight profiler, an Ames Engineering, Inc. LISA single laser unit, was received in February 2003 for the study. Based on the work done during the 2003 construction season, the following conclusions can be made: (1) For hot mix asphalt surfaces, the LISA correlated well with the contractors' profilographs; (2) LISA results are significantly affected by longitudinal tining on portland cement concrete pavements, requiring a laser system upgrade to give accurate results; (3) A significant timesaving was realized by using the LISA; (4) Increasing visibility and reducing time in the construction zone improved safety; (5) One person with limited lifting capabilities could set up and operate the LISA; and (6) With the current Iowa Department of Transportation specification, the LISA cannot totally replace the profilograph, since bridges and short segments with no adjoining pavement would still require a profilograph.
Resumo:
Portland cement concrete pavements have given excellent service history for Iowa. Many of these pavements placed during the 1920’s and 1930’s are still in service today. Many factors go in to achieve a long term durable concrete pavement. Probably the most important is the durability of the aggregate. Until the 1930’s, pit run gravel was the most predominant aggregate used. Many of these gravels provided long term performance and their durability is dependent upon the carbonate fraction of the gravel. Later, limestone (calcium carbonate) and dolomite (calcium, magnesium carbonate) sources were mined across Iowa. The durability of these carbonate aggregates is largely dependent upon the pore system which can cause freeze thaw problems known as D-cracking, which was a problem with some sources during the 1960’s. Also, some of these carbonate aggregates are also susceptible to deterioration from deicing salts. Geologists have identified the major components that affect the durability of these carbonate aggregates and sources are tested to ensure long term performance in Portland cement concrete. Air entrainment was originally put in concrete to improve scaling resistance. It is well known that air entrainment is required to provide freeze thaw protection in concrete pavements today. In Iowa, air entrainment was not introduced in concrete pavements until 1952. This research investigates properties that made older concrete pavements durable without air entrainment.
Resumo:
Sufficient evidence was not discovered in this brief search to alter the general opinion that the Serviceability (Present Serviceability Index-PSI) - Performance Concepts developed by the AASHO Road Test provides the optimum engineering basis for pavement management. Use of these concepts in Iowa has the additional advantage in that we have a reasonable quantity of historical data over a period of time on the change in pavement condition as measured by PSI's. Some additional benefits would be the ability to better assess our needs with respect to those being recommended to Congress by AASHTO Committees. These concepts have been the basis used for developing policies on dimensions and weight of vehicles and highway needs which the AASHTO Transport Committees have recommended to the United States House Committee on Ways and Means. The first recommendation based on these concepts was made in the mid 1960's. Iowa's participation in the evaluation for this recommendation was under the direction of our present Director of Transportation, Mr. Raymond Kassel. PSI Indexes had to be derived from subjective surface ratings at that time. The most recent recommendation to Congress was made in November of 1977. Based on the rationale expressed above, a pilot study of the major part of the rural interstate system was conducted. The Objective of the study was to measure pavement performance through the use of the Present Serviceability Index (PSI) - Pavement Performance concepts as developed by the AASHO Road Test and to explore the usefulness of this type of data as a pavement management tool. Projects in the vicinity of the major urban centers were not included in this study due to the extra time that would be required to isolate accurate traffic data in these areas. Projects consisting of asphalt surface courses on crushed stone base sections were not included.
Resumo:
The Iowa D.O.T. specifications do not require 100 percent of 50 blow Marshall density (generally 94%) for field compaction. However, stabilities are determined in the Laboratory on specimens compacted to 100 percent of Marshall density. The purpose of this study is to determine the stabilities of specimens compacted to various densities which are below 100 percent of the 50 blow Marshall density.
Resumo:
It has been observed in the Laboratory that an increase in oven heating time of relatively short duration between mixing and compaction of asphaltic concrete hot mixes can have an effect on the Marshall stability results obtained. The purpose of this short investigation is to determine the effect of oven heating time on the density and stability of hot mixes.
Resumo:
The 1982 cost of a two-inch asphaltic concrete overlay, with fabric, was an average of 85% of the cost of a three-inch overlay (see attached calculations). A structural number can be assigned to the extra inch of overlay, whereas it is doubtful that any number can be assigned to the fabric. The observations made on the projects in this report leave little reason to be optimistic on the use of fabrics under asphalt overlays. This is especially true of the Floyd, Dallas and Clarke county projects. A great amount of fabric is being used nationwide for this purpose, probably more from sales promotion than from actual documented performance. Full scale field testing is continuing each time a project is let utilizing fabric reinforcement under asphaltic concrete overlays. It has already become apparent that the use of fabrics in AC overlays is not always cost effective.
Resumo:
Other states have elected not to adopt the 75 Blow Marshall Mix Design for their heavy traffic roads. Their reasons are that the 75 blow design cracks the larger aggregates. Therefore, a limited study was done during December, 1985, to try to determine what amount of cracking took place, and in what condition the cracks are in the mix.