917 resultados para Receptors, Dopamine D3


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nicotinic acetylcholine receptors are pentameric ligand-gated ion channels mediating fast synaptic transmission throughout the peripheral and central nervous systems. They have been implicated in various processes related to cognitive functions, learning and memory, arousal, reward, motor control and analgesia. Therefore, these receptors present alluring potential therapeutic targets for the treatment of pain, epilepsy, Alzheimer’s disease, Parkinson’s disease, Tourette’s syndrome, schizophrenia, anxiety, depression and nicotine addiction. The work detailed in this thesis focuses on binding studies of neuronal nicotinic receptors and aims to further our knowledge of subtype specific functional and structural information.

Chapter 1 is an introductory chapter describing the structure and function of nicotinic acetylcholine receptors as well as the methodologies used for the dissertation work described herein. There are several different subtypes of nicotinic acetylcholine receptors known to date and the subtle variations in their structure and function present a challenging area of study. The work presented in this thesis deals specifically with the α4β2 subtype of nicotinic acetylcholine receptor. This subtype assembles into 2 closely related stoichiometries, termed throughout this thesis as A3B2 and A2B3 after their respective subunit composition. Chapter 2 describes binding studies of select nicotinic agonists on A3B2 and A2B3 receptors determined by whole-cell recording. Three key binding interactions, a cation-π and two hydrogen bonds, were probed for four nicotinic agonists, acetylcholine, nicotine, smoking cessation drug varenicline (Chantix®) and the related natural product cytisine.

Results from the binding studies presented in Chapter 2 show that the major difference in binding of these four agonists to A3B2 and A2B3 receptors lies in one of the two hydrogen bond interactions where the agonist acts as the hydrogen bond acceptor and the backbone NH of a conserved leucine residue in the receptor acts as the hydrogen bond donor. Chapter 3 focuses on studying the effect of modulating the hydrogen bond acceptor ability of nicotine and epibatidine on A3B2 receptor function determined by whole-cell recording. Finally, Chapter 4 describes single-channel recording studies of varenicline binding to A2B3 and A3B2 receptors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This dissertation primarily describes chemical-scale studies of nicotinic acetylcholine receptors (nAChRs) in order to better understand ligand-receptor selectivity and allosteric modulation influences during receptor activation. Electrophysiology coupled with canonical and non-canonical amino acids mutagenesis is used to probe subtle changes in receptor function.

The first half of this dissertation focuses on differential agonist selectivity of α4β2-containing nAChRs. The α4β2 nAChR can assemble in alternative stoichiometries as well as assemble with other accessory subunits. Chapter 2 identifies key structural residues that dictate binding and activation of three stoichiometry-dependent α4β2 receptor ligands: sazetidine-A, cytisine, and NS9283. These do not follow previously suggested hydrogen-bonding patterns of selectivity. Instead, three residues on the complementary subunit strongly influence binding ability of a ligand and receptor activation. Chapter 3 involves isolation of a α5α4β2 receptor-enriched population to test for a potential alternative agonist binding location at the α5 α4 interface. Results strongly suggest that agonist occupation of this site is not necessary for receptor activation and that the α5 subunit only incorporates at the accessory subunit location.

The second half of this dissertation seeks to identify residue interactions with positive allosteric modulators (PAMs) of the α7 nAChR. Chapter 4 focuses on methods development to study loss of potentiation of Type I PAMs, which indicate residues vital to propagation of PAM effects and/or binding. Chapter 5 investigates α7 receptor modulation by a Type II PAM (PNU 120596). These results show that PNU 120596 does not alter the agonist binding site, thus is relegated to influencing only the gating component of activation. From this, we were able to map a potential network of residues from the agonist binding site to the proposed PNU 120596 binding site that are essential for receptor potentiation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sleep is a highly conserved behavioral state whose regulation is still unclear. In this thesis I initially briefly introduce the known sleep circuitry and regulation in vertebrates, and why zebrafish is seen as a good model to study sleep-regulation. I describe the existing two-process model of sleep regulation, which posits that the two processes C (circadian) and S (homeostatic) control timing of sleep-wake behavior. I then study the role melatonin plays in the circadian regulation of sleep using zebrafish. Firstly, we find that the absence of melatonin results in a reduction of sleep at night, establishing that endogenous melatonin is required for sleep at night. Secondly, melatonin mutants show a reduction in sleep in animals with no functional behavioral rhythms suggesting that melatonin does not require intact circadian rhythms for its effect on sleep. Thirdly, melatonin mutants do not exhibit any changes in circadian rhythms, suggesting that the circadian clock does not require melatonin for its function. Fourthly, we find that in the absence of melatonin, there is no rhythmic expression of sleep, suggesting that melatonin is the output molecule of process C. Lastly, we describe a connection between adenosine signaling (output molecules of process S), and melatonin. Following this we proceed to study the role adenosine signaling plays in sleep-wake behavior. We find that firstly, adenosine receptor A1 and A2 are involved in sleep- wake behavior in zebrafish, based on agonist/antagonist behavioral results. Secondly, we find that several brain regions such as PACAP cells in the rostral midbrain, GABAergic cells in the forebrain and hindbrain, Dopamine and serotonin cells in the caudal hypothalamus and sox2 cells lining the hindbrain ventricle are activated in response to the A1 antagonist and VMAT positive cells are activated in response to the A2A agonist, suggesting these areas are involved in adenosine signaling in zebrafish. Thirdly, we find that knocking out the zebrafish adenosine receptors has no effect on sleep architecture. Lastly, we find that while the A1 agonist phenotype requires the zfAdora1a receptor, the antagonist and the A2A agonist behavioral phenotypes are not mediated by the zfAdora1a, zfAdora1b and zfAdoraA2Aa, zfAdora2Ab receptors respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Os antipsicóticos são drogas utilizadas no tratamento de muitos transtornos psiquiátricos, sendo classificados em dois grupos: típicos e atípicos. Os típicos formam o grupo de drogas que bloqueiam especialmente os receptores de dopamina e, por isto, causam efeitos colaterais característicos, que se manifestam através de sintomas extrapiramidais e podem terminar em discinesia tardia. Os atípicos apresentam eficácia antipsicótica similar à dos antipsicóticos típicos, mas produzem menos efeitos colaterais extrapiramidais e não causam discinesia tardia. Os antipsicóticos se ligam às proteínas plasmáticas, principalmente a albumina, a qual representa cerca de 60% do total das proteínas no soro humano. Neste trabalho estudamos os processos de interação de duas drogas antipsicóticas atípicas, risperidona e sulpirida, com as albuminas séricas humana (HSA) e bovina (BSA), através da técnica de supressão da fluorescência intrínseca do triptofano. A partir dos espectros de fluorescência, a análise dos dados foi feita obtendo-se os gráficos e as constantes de Stern-Volmer. A análise da supressão da fluorescência foi feita a partir da média aritmética dos dados oriundos dos experimentos realizados em cada condição adotada. Como a molécula da sulpirida é fluorescente desenvolvemos uma modelagem matemática do processo de interação, que nos permitiu então obter os dados referentes à supressão da fluorescência da proteína. Os resultados mostraram que a risperidona e a sulpirida suprimem a fluorescência de ambas albuminas por um processo de quenching estático, formando complexos droga-albumina. A risperidona tem uma afinidade com a HSA cerca de 6,5 vezes maior do que a sulpirida, a 37 oC. As constantes de associação calculadas para a interação risperidona-HSA, através da Teoria de Stern-Volmer, foram 1,43 ( 0,05) x 105 M-1, a 37 C, e 2,56 ( 0,09) x 105 M-1, a 25 C1; e para a sulpirida, 2,20 ( 0,08) x 104 M-1, a 37 C, e 5,46 ( 0,20) x 104 M-1, a 25 C. Como a taxa de quenching da BSA foi maior do que a da HSA, sugerimos que o sítio primário para a risperidona nas albuminas esteja localizado mais próximo ao domínio do triptofano 134 da BSA do que do domínio do triptofano 212 da HSA. O mesmo sugerimos com relação ao sítio para a sulpirida a 37 C.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cannabinoid CB1 receptors peripherally modulate energy metabolism. Here, we investigated the role of CB1 receptors in the expression of glucose/pyruvate/tricarboxylic acid (TCA) metabolism in rat abdominal muscle. Dihydrolipoamide dehydrogenase (DLD), a flavoprotein component (E3) of alpha-ketoacid dehydrogenase complexes with diaphorase activity in mitochondria, was specifically analyzed. After assessing the effectiveness of the CB1 receptor antagonist AM251 (3 mg kg(-1), 14 days) on food intake and body weight, we could identified seven key enzymes from either glycolytic pathway or TCA cycle-regulated by both diet and CB1 receptor activity-through comprehensive proteomic approaches involving two-dimensional electrophoresis and MALDI-TOF/LC-ESI trap mass spectrometry. These enzymes were glucose 6-phosphate isomerase (GPI), triosephosphate isomerase (TPI), enolase (Eno3), lactate dehydrogenase (LDHa), glyoxalase-1 (Glo1) and the mitochondrial DLD, whose expressions were modified by AM251 in hypercaloric diet-induced obesity. Specifically, AM251 blocked high-carbohydrate diet (HCD)-induced expression of GPI, TPI, Eno3 and LDHa, suggesting a down-regulation of glucose/pyruvate/lactate pathways under glucose availability. AM251 reversed the HCD-inhibited expression of Glo1 and DLD in the muscle, and the DLD and CB1 receptor expression in the mitochondrial fraction. Interestingly, we identified the presence of CB1 receptors at the membrane of striate muscle mitochondria. DLD over-expression was confirmed in muscle of CB1-/- mice. AM251 increased the pyruvate dehydrogenase and glutathione reductase activity in C2C12 myotubes, and the diaphorase/oxidative activity in the mitochondria fraction. These results indicated an up-regulation of methylglyoxal and TCA cycle activity. Findings suggest that CB1 receptors in muscle modulate glucose/pyruvate/lactate pathways and mitochondrial oxidative activity by targeting DLD.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The presence of endogenous opioid peptides in different testicular cell types has been extensively characterized and provides evidence for the participation of the opioid system in the regulation of testicular function. However, the exact role of the opioid system during the spermatogenesis has remained controversial since the presence of the mu-, delta-and kappa-opioid receptors in spermatogenic cells was yet to be demonstrated. Through a combination of quantitative real-time PCR, immunofluorescence, immunohistochemistry and flow cytometry approaches, we report for the first time the presence of active mu-, deltaand kappa-opioid receptors in mouse male germ cells. They show an exposition time-dependent response to opioid agonist, hence suggesting their active involvement in spermatogenesis. Our results contribute to understanding the role of the opioid receptors in the spermatogenesis and could help to develop new strategies to employ the opioid system as a biochemical tool for the diagnosis and treatment of male infertility.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To test the efficacy of the technique of using dopamine-antagonists with pituitary extracts, experiments were conducted in July/August '93, at the CIFE Fresh water Fish Farm, Powerkheda. In all, 35 sets (1 female x 2 male in each set) were tried individually. 19 sets were treated with Domperidone (DOM) and Carp Pituitary Extract (CPE) and they constituted the experimental sets, while the rest 16 were treated with CPE and formed the control sets. The breeding, complete ovulation and hatching was 84.2%, 87.5% and 85.7%, respectively in the experimental sets whereas it was 93.7%, 60% and 72.7%, respectively in case of control sets. Experimental sets yielded 1.20 lakh spawn/kg body wt. (female) as compared to 0.83 lakh spawn kg body wt. (female) received from control sets on average basis. When DOM was used at 50-60% there was 100% breeding success but when increased to 70%, breeding rate fell to 66%. In mass breeding of Catla in the circular hatchery DOM mixed with CPE in 50:50 ratio gave excellent results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An association of the dopamine receptor D4 (DRD4) gene located on chromosome 11p15.5 and attention deficit/hyperactivity disorder (ADHD) has been demonstrated and replicated by multiple investigators. A specific allele [the 7-repeat of a 48-bp variable number of tandem repeats (VNTR) in exon 3] has been proposed as an etiological factor in attentional deficits manifested in some children diagnosed with this disorder. In the current study, we evaluated ADHD subgroups defined by the presence or absence of the 7-repeat allele of the DRD4 gene, using neuropsychological tests with reaction time measures designed to probe attentional networks with neuroanatomical foci in D4-rich brain regions. Despite the same severity of symptoms on parent and teacher ratings for the ADHD subgroups, the average reaction times of the 7-present subgroup showed normal speed and variability of response whereas the average reaction times of the 7-absent subgroup showed the expected abnormalities (slow and variable responses). This was opposite the primary prediction of the study. The 7-present subgroup seemed to be free of some of the neuropsychological abnormalities thought to characterize ADHD.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Associations have been reported of the seven-repeat (7R) allele of the human dopamine receptor D4 (DRD4) gene with both attention-deficit/hyperactivity disorder and the personality trait of novelty seeking. This polymorphism occurs in a 48-bp tandem repea

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gaining insight into the mechanisms of chemoreception in aphids is of primary importance for both integrative studies on the evolution of host plant specialization and applied research in pest control management because aphids rely on their sense of smell

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adenosine receptors play an important role in learning and memory as their antagonists have been found to facilitate learning and memory in various tasks in rodents. However, few studies have examined the effect of adenosine A(2A) receptor deficiency on c

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The subiculum, which is the primary target of CA1 pyramidal neurons and sending efferent fibres to many brain regions, serves as a hippocampal interface in the neural information processes between hippocampal formation and neocortex. Long-term depression (LTD) is extensively studied in the hippocampus, but not at the CA1-subicular synaptic transmission. Using whole-cell EPSC recordings in the brain slices of young rats, we demonstrated that the pairing protocols of low frequency stimulation (LFS) at 3 Hz and postsynaptic depolarization of -50 mVelicited a reliable LTD in the subiculum. The LTD did not cause the changes of the paired-pulse ratio of EPSC. Furthermore, it did not depend on either NMDA receptors or voltage-gated calcium channels (VGCCs). Bath application of the G-protein coupled muscarinic acetylcholine receptors (mAChRs) antagonists, atropine or scopolamine, blocked the LTD, suggesting that mAChRs are involved in the LTD. It was also completely blocked by either the Ca2+ chelator BAPTA or the G-protein inhibitor GDP-beta-S in the intracellular solution. This type of LTD in the subiculum may play a particular role in the neural information processing between the hippocampus and neocortex. (c) 2005 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Learned association between drugs of abuse and context is essential for the formation of drug conditioned place preference (CPP), which is believed to engage many brain regions including hippocampus, and nucleus accumbens (NAc). The underlying mechanisms