920 resultados para Ras association domain family protein 1A
Resumo:
Posttranslational modification of Rab proteins by geranylgeranyltransferase type II requires that they first bind to Rab escort protein (REP). Following prenylation, REP is postulated to accompany the modified GTPase to its specific target membrane. REP binds preferentially to Rab proteins that are in the GDP state, but the specific structural domains involved in this interaction have not been defined. In p21 Ras, the α2 helix of the Switch 2 domain undergoes a major conformational change upon GTP hydrolysis. Therefore, we hypothesized that the corresponding region in Rab1B might play a key role in the interaction with REP. Introduction of amino acid substitutions (I73N, Y78D, and A81D) into the putative α2 helix of Myc-tagged Rab1B prevented prenylation of the recombinant protein in cell-free assays, whereas mutations in the α3 and α4 helices did not. Additionally, upon transient expression in transfected HEK-293 cells, the Myc-Rab1B α2 helix mutants were not efficiently prenylated as determined by incorporation of [3H]mevalonate. Metabolic labeling studies using [32P]orthophosphate indicated that the poor prenylation of the Rab1B α2 helix mutants was not directly correlated with major disruptions in guanine nucleotide binding or intrinsic GTPase activity. Finally, gel filtration analysis of cytosolic fractions from 293 cells that were coexpressing T7 epitope-tagged REP with various Myc-Rab1B constructs revealed that mutations in the α2 helix of Rab1B prevented the association of nascent (i.e., nonprenylated) Rab1B with REP. These data indicate that the Switch 2 domain of Rab1B is a key structural determinant for REP interaction and that nucleotide-dependent conformational changes in this region are largely responsible for the selective interaction of REP with the GDP-bound form of the Rab substrate.
Resumo:
We identified a novel human homologue of the rat FE65 gene, hFE65L, by screening the cytoplasmic domain of beta-amyloid precursor protein (beta PP) with the "interaction trap." The cytoplasmic domains of the beta PP homologues, APLP1 and APLP2 (amyloid precursor-like proteins), were also tested for interaction with hFE65L. APLP2, but not APLP1, was found to interact with hFE65L. We confirmed these interactions in vivo by successfully coimmunoprecipatating endogenous beta PP and APLP2 from mammalian cells overexpressing a hemagglutinin-tagged fusion of the C-terminal region of hFE65L. We report the existence of a human FE65 gene family and evidence supporting specific interactions between members of the beta PP and FE65 protein families. Sequence analysis of the FE65 human gene family reveals the presence of two phosphotyrosine interaction (PI) domains. Our data show that a single PI domain is sufficient for binding of hFE65L to the cytoplasmic domain of beta PP and APLP2. The PI domain of the protein, Shc, is known to interact with the NPXYp motif found in the cytoplasmic domain of a number of different growth factor receptors. Thus, it is likely that the PI domains present in the C-terminal moiety of the hFE65L protein bind the NPXY motif located in the cytoplasmic domain of beta PP and APLP2.
Resumo:
The alpha subunits of the heterotrimeric guanine nucleotide-binding proteins (G proteins) hydrolyze GTP at a rate significantly higher than do most members of the Ras family of approximatelly 20-kDa GTP-binding proteins, which depend on a GTPase-activating protein (GAP) for acceleration of GTP hydrolysis. It has been demonstrated that an inserted domain in the G-protein alpha subunit, not present in the much smaller Ras-like proteins, is responsible for this difference [Markby, D. W., Onrust, R. & Bourne, H. R. (1993) Science 262, 1895-1900]. We report here that ARD1, a 64-kDa protein with an 18-kDa carboxyl-terminal ADP-ribosylation factor (ARF) domain, exhibited significant GTPase activity, whereas the ARF domain, expressed as a recombinant protein in Escherichia coli, did not. Addition of the 46-kDa amino-terminal extension (similarly synthesized in E. coli) to the GTP-binding ARF-domain of ARD1 enhanced GTPase activity and inhibited GDP dissociation. The kinetic properties of mixtures of the ARF and non-ARF domains were similar to those of an intact recombinant ARD1. Physical association of the two proteins was demonstrated directly by gel filtration and by using the immobilized non-ARF domain. Thus, like the alpha subunits of heterotrimeric G proteins, ARD1 appears to consist of two domains that interact to regulate the biological activity of the protein.
Resumo:
Two areas of particular importance in prostate cancer progression are primary tumour development and metastasis. These processes involve a number of physiological events, the mediators of which are still being discovered and characterised. Serine proteases have been shown to play a major role in cancer invasion and metastasis. The recently discovered phenomenon of their activation of a receptor family known as the protease activated receptors (PARs) has extended their physiological role to that of signaling molecule. Several serine proteases are expressed by malignant prostate cancer cells, including members of the kallikreinrelated peptidase (KLK) serine protease family, and increasingly these are being shown to be associated with prostate cancer progression. KLK4 is highly expressed in the prostate and expression levels increase during prostate cancer progression. Critically, recent studies have implicated KLK4 in processes associated with cancer. For example, the ectopic over-expression of KLK4 in prostate cancer cell lines results in an increased ability of these cells to form colonies, proliferate and migrate. In addition, it has been demonstrated that KLK4 is a potential mediator of cellular interactions between prostate cancer cells and osteoblasts (bone forming cells). The ability of KLK4 to influence cellular behaviour is believed to be through the selective cleavage of specific substrates. Identification of relevant in vivo substrates of KLK4 is critical to understanding the pathophysiological roles of this enzyme. Significantly, recent reports have demonstrated that several members of the KLK family are able to activate PARs. The PARs are relatively new members of the seven transmembrane domain containing G protein coupled receptor (GPCR) family. PARs are activated through proteolytic cleavage of their N-terminus by serine proteases, the resulting nascent N-terminal binds intramolecularly to initiate receptor activation. PARs are involved in a number of patho-physiological processes, including vascular repair and inflammation, and a growing body of evidence suggests roles in cancer. While expression of PAR family members has been documented in several types of cancers, including prostate, the role of these GPCRs in prostate cancer development and progression is yet to be examined. Interestingly, several studies have suggested potential roles in cellular invasion through the induction of cytoskeletal reorganisation and expression of basement membrane-degrading enzymes. Accordingly, this program of research focussed on the activation of the PARs by the prostate cancer associated enzyme KLK4, cellular processing of activated PARs and the expression pattern of receptor and agonist in prostate cancer. For these studies KLK4 was purified from the conditioned media of stably transfected Sf9 insect cells expressing a construct containing the complete human KLK4 coding sequence in frame with a V5 epitope and poly-histidine encoding sequences. The first aspect of this study was the further characterisation of this recombinant zymogen form of KLK4. The recombinant KLK4 zymogen was demonstrated to be activatable by the metalloendopeptidase thermolysin and amino terminal sequencing indicated that thermolysin activated KLK4 had the predicted N-terminus of mature active KLK4 (31IINED). Critically, removal of the pro-region successfully generated a catalytically active enzyme, with comparable activity to a previously published recombinant KLK4 produced from S2 insect cells. The second aspect of this study was the activation of the PARs by KLK4 and the initiation of signal transduction. This study demonstrated that KLK4 can activate PAR-1 and PAR-2 to mobilise intracellular Ca2+, but failed to activate PAR-4. Further, KLK4 activated PAR-1 and PAR-2 over distinct concentration ranges, with KLK4 activation and mobilisation of Ca2+ demonstrating higher efficacy through PAR-2. Thus, the remainder of this study focussed on PAR-2. KLK4 was demonstrated to directly cleave a synthetic peptide that mimicked the PAR-2 Nterminal activation sequence. Further, KLK4 mediated Ca2+ mobilisation through PAR-2 was accompanied by the initiation of the extra-cellular regulated kinase (ERK) cascade. The specificity of intracellular signaling mediated through PAR-2 by KLK4 activation was demonstrated by siRNA mediated protein depletion, with a reduction in PAR-2 protein levels correlating to a reduction in KLK4 mediated Ca2+mobilisation and ERK phosphorylation. The third aspect of this study examined cellular processing of KLK4 activated PAR- 2 in a prostate cancer cell line. PAR-2 was demonstrated to be expressed by five prostate derived cell lines including the prostate cancer cell line PC-3. It was also demonstrated by flow cytometry and confocal microscopy analyses that activation of PC-3 cell surface PAR-2 by KLK4 leads to internalisation of this receptor in a time dependent manner. Critically, in vivo relevance of the interaction between KLK4 and PAR-2 was established by the observation of the co-expression of receptor and agonist in primary prostate cancer and prostate cancer bone lesion samples by immunohistochemical analysis. Based on the results of this study a number of exciting future studies have been proposed, including, delineating differences in KLK4 cellular signaling via PAR-1 and PAR-2 and the role of PAR-1 and PAR-2 activation by KLK4 in prostate cancer cells and bone cells in prostate cancer progression.
Resumo:
STUDY QUESTION Are single-nucleotide polymorphisms (SNPs) at the interleukin 1A (IL1A) gene locus associated with endometriosis risk? SUMMARY ANSWER We found evidence for strong association between IL1A SNPs and endometriosis risk. WHAT IS KNOWN ALREADY Genetic factors contribute substantially to the complex aetiology of endometriosis and the disease has an estimated heritability of ∼51%. We, and others, have conducted genome-wide association (GWA) studies for endometriosis, which identified a total of nine independent risk loci. Recently, two small Japanese studies reported eight SNPs (rs6542095, rs11677416, rs3783550, rs3783525, rs3783553, rs2856836, rs1304037 and rs17561) at the IL1A gene locus as suggestively associated with endometriosis risk. There is also evidence of a link between inflammation and endometriosis. STUDY DESIGN, SIZE, DURATION We sought to further investigate the eight IL1A SNPs for association with endometriosis using an independent sample of 3908 endometriosis cases and 8568 controls of European and Japanese ancestry. The study was conducted between October 2013 and July 2014. PARTICIPANTS/MATERIALS, SETTING, METHODS By leveraging GWA data from our previous multi-ethnic GWA meta-analysis for endometriosis, we imputed variants in the IL1A region, using a recent 1000 Genomes reference panel. After combining summary statistics for the eight SNPs from our European and Japanese imputed data with the published results, a fixed-effect meta-analysis was performed. An additional meta-analysis restricted to endometriosis cases with moderate-to-severe (revised American Fertility Society stage 3 or 4) disease versus controls was also performed. MAIN RESULTS AND THE ROLE OF CHANCE All eight IL1A SNPs successfully replicated at P < 0.014 in the European imputed data with concordant direction and similar size to the effects reported in the original Japanese studies. Of these, three SNPs (rs6542095, rs3783550 and rs3783525) also showed association with endometriosis at a nominal P < 0.05 in our independent Japanese sample. Fixed-effect meta-analysis of the eight SNPs for moderate-to-severe endometriosis produced a genome-wide significant association for rs6542095 (odds ratio = 1.21; 95% confidence interval = 1.13–1.29; P = 3.43 × 10−8). LIMITATIONS, REASONS FOR CAUTION The meta-analysis for moderate-to-severe endometriosis included results of moderate-to-severe endometriosis cases from our European data sets and all endometriosis cases from the Japanese data sets, as disease stage information was not available for endometriosis cases in the Japanese data sets. WIDER IMPLICATIONS OF THE FINDINGS SNP rs6542095 is located ∼2.3 kb downstream of the IL1A gene and ∼6.9 kb upstream of cytoskeleton-associated protein 2-like (CKAP2L) gene. The IL1A gene encodes the IL1a protein, a member of the interleukin 1 cytokine family which is involved in various immune responses and inflammatory processes. These results provide important replication in an independent Japanese sample and, for the first time, association of the IL1A locus in endometriosis patients of European ancestry. SNPs within the IL1A locus may regulate other genes, but if IL1A is the target, our results provide supporting evidence for a link between inflammatory responses and the pathogenesis of endometriosis. STUDY FUNDING/COMPETING INTEREST(S) The research was funded by grants from the Australian National Health and Medical Research Council and Wellcome Trust. None of the authors has competing interests for the study.
Resumo:
Single-stranded DNA-binding proteins (SSB) play an important role in most aspects of DNA metabolism including DNA replication, repair, and recombination. We report here the identification and characterization of SSB proteins of Mycobacterium smegmatis and Mycobacterium tuberculosis. Sequence comparison of M. smegmatis SSB revealed that it is homologous to M. tuberculosis SSB, except for a small spacer connecting the larger amino-terminal domain with the extreme carboxyl-terminal tail. The purified SSB proteins of mycobacteria bound single-stranded DNA with high affinity, and the association and dissociation constants were similar to that of the prototype SSB. The proteolytic signatures of free and bound forms of SSB proteins disclosed that DNA binding was associated with structural changes at the carboxyl-terminal domain. Significantly, SSB proteins from mycobacteria displayed high affinity for cognate RecA, whereas Escherichia coli SSB did not under comparable experimental conditions. Accordingly, SSB and RecA were coimmunoprecipitated from cell lysates, further supporting an interaction between these proteins in vivo. The carboxyl-terminal domain of M. smegmatis SSB, which is not essential for interaction with ssDNA, is the site of binding of its cognate RecA. These studies provide the first evidence for stable association of eubacterial SSB proteins with their cognate RecA, suggesting that these two proteins might function together during DNA repair and/or recombination.
Resumo:
The number of red blood cells is normally tightly regulated by a classic homeostatic mechanism based on oxygen sensing in the kidney. Decreased oxygen delivery resulting from anemia induces the production of erythropoietin, which increases red cell production and hence oxygen delivery. Investigations of erythropoietin regulation identified the transcription factor hypoxia-inducible factor (HIF). HIF is now recognized as being a key regulator of genes that function in a comprehensive range of processes besides erythropoiesis, including energy metabolism and angiogenesis. HIF itself is regulated through the -subunit, which is hydroxylated in the presence of oxygen by a family of three prolyl hydroxylase domain proteins (PHDs)/HIF prolyl hydroxylases/egg-laying-defective nine enzymes. Hydroxylation allows capture by the von Hippel–Lindau tumor suppressor gene product, ubiquitination, and destruction by the proteasome. Here we describe an inherited mutation in a mammalian PHD enzyme. We show that this mutation in PHD2 results in a marked decrease in enzyme activity and is associated with familial erythrocytosis, identifying a previously unrecognized cause of this condition. Our findings indicate that PHD2 is critical for normal regulation of HIF in humans.
Resumo:
The PITSLRE protein kinases are parts of the large family of p34cdc2-related kinases. During apoptosis induced by some stimuli, specific PITSLRE isoforms are cleaved by caspase to produce a protein that contains the C-terminal kinase domain of the PITSLRE proteins (p110C). The p110C induces apoptosis when it is ectopically expressed in Chinese hamster ovary cells. In our study, similar induction of this p110C was observed during anoikis in NIH3T3 cells. To investigate the molecular mechanism of apoptosis mediated by p110C, we used the yeast two-hybrid system to screen a human fetal liver cDNA library and identified p21-activated kinase 1 (PAK1) as an interacting partner of p110C. The association of p110C with PAK1 was further confirmed by in vitro binding assay, in vivo coimmunoprecipitation, and confocal microscope analysis. The interaction of p110C with PAK1 occurred within the residues 210-332 of PAK1. Neither association between p58PITSLRE or p110PITSLRE and PAK1 nor association between p110C and PAK2 or PAK3 was observed. Anoikis was increased and PAK1 activity was inhibited when NIH3T3 cells were transfected with p110C. Furthermore, the binding of p110C with PAK1 and inhibition of PAK1 activity were also observed during anoikis. Taken together, these data suggested that PAK1 might participate in the apoptotic pathway mediated by p110C.
Resumo:
AtTRB1, 2 and 3 are members of the SMH (single Myb histone) protein family, which comprises double-stranded DNA-binding proteins that are specific to higher plants. They are structurally conserved, containing a Myb domain at the N-terminus, a central H1/H5-like domain and a C-terminally located coiled-coil domain. AtTRB1, 2 and 3 interact through their Myb domain specifically with telomeric double-stranded DNA in vitro, while the central H1/H5-like domain interacts non-specifically with DNA sequences and mediates protein–protein interactions. Here we show that AtTRB1, 2 and 3 preferentially localize to the nucleus and nucleolus during interphase. Both the central H1/H5-like domain and the Myb domain from AtTRB1 can direct a GFP fusion protein to the nucleus and nucleolus. AtTRB1–GFP localization is cell cycle-regulated, as the level of nuclear-associated GFP diminishes during mitotic entry and GFP progressively re-associates with chromatin during anaphase/telophase. Using fluorescence recovery after photobleaching and fluorescence loss in photobleaching, we determined the dynamics of AtTRB1 interactions in vivo. The results reveal that AtTRB1 interaction with chromatin is regulated at two levels at least, one of which is coupled with cell-cycle progression, with the other involving rapid exchange.
Resumo:
The ROCO proteins are a family of large, multidomain proteins characterised by the presence of a Ras of complex proteins (ROC) domain followed by a COR, or C-terminal of ROC, domain. It has previously been shown that the ROC domain of the human ROCO protein Leucine Rich Repeat Kinase 2 (LRRK2) controls its kinase activity. Here, the ability of the ROC domain of another human ROCO protein, Death Associated Protein Kinase 1 (DAPK1), to bind GTP and control its kinase activity has been evaluated. In contrast to LRRK2, loss of GTP binding by DAPK1 does not result in loss of kinase activity, instead acting to modulate this activity. These data highlight the ROC domain of DAPK1 as a target for modifiers of this proteins function, and casts light on the role of ROC domains as intramolecular regulators in complex proteins with implications for a broad range of human diseases.
Resumo:
Bok is a member of the Bcl-2 protein family that controls intrinsic apoptosis. Bok is most closely related to the pro-apoptotic proteins Bak and Bax, but in contrast to Bak and Bax, very little is known about its cellular role. Here we report that Bok binds strongly and constitutively to inositol 1,4,5-trisphosphate receptors (IP3Rs), proteins that form tetrameric calcium channels in the endoplasmic reticulum (ER) membrane and govern the release of ER calcium stores. Bok binds most strongly to IP3R1 and IP3R2, and barely to IP3R3, and essentially all cellular Bok is IP3R bound in cells that express substantial amounts of IP3Rs. Binding to IP3Rs appears to be mediated by the putative BH4 domain of Bok and the docking site localizes to a small region within the coupling domain of IP3Rs (amino acids 1895–1903 of IP3R1) that is adjacent to numerous regulatory sites, including sites for proteolysis. With regard to the possible role of Bok-IP3R binding, the following was observed: (i) Bok does not appear to control the ability of IP3Rs to release ER calcium stores, (ii) Bok regulates IP3R expression, (iii) persistent activation of inositol 1,4,5-trisphosphate-dependent cell signaling causes Bok degradation by the ubiquitin-proteasome pathway, in a manner that parallels IP3R degradation, and (iv) Bok protects IP3Rs from proteolysis, either by chymotrypsin in vitro or by caspase-3 in vivo during apoptosis. Overall, these data show that Bok binds strongly and constitutively to IP3Rs and that the most significant consequence of this binding appears to be protection of IP3Rs from proteolysis. Thus, Bok may govern IP3R cleavage and activity during apoptosis.
Resumo:
CASPARIAN STRIP MEMBRANE DOMAIN PROTEINS (CASPs) are four-membrane-span proteins that mediate the deposition of Casparian strips in the endodermis by recruiting the lignin polymerization machinery. CASPs show high stability in their membrane domain, which presents all the hallmarks of a membrane scaffold. Here, we characterized the large family of CASP-like (CASPL) proteins. CASPLs were found in all major divisions of land plants as well as in green algae; homologs outside of the plant kingdom were identified as members of the MARVEL protein family. When ectopically expressed in the endodermis, most CASPLs were able to integrate the CASP membrane domain, which suggests that CASPLs share with CASPs the propensity to form transmembrane scaffolds. Extracellular loops are not necessary for generating the scaffold, since CASP1 was still able to localize correctly when either one of the extracellular loops was deleted. The CASP first extracellular loop was found conserved in euphyllophytes but absent in plants lacking Casparian strips, an observation that may contribute to the study of Casparian strip and root evolution. In Arabidopsis (Arabidopsis thaliana), CASPL showed specific expression in a variety of cell types, such as trichomes, abscission zone cells, peripheral root cap cells, and xylem pole pericycle cells.
Resumo:
Nrd1 is an essential yeast protein of unknown function that has an RNA recognition motif (RRM) in its carboxyl half and a putative RNA polymerase II-binding domain, the CTD-binding motif, at its amino terminus. Nrd1 mediates a severe reduction in pre-mRNA production from a reporter gene bearing an exogenous sequence element in its intron. The effect of the inserted element is highly sequence-specific and is accompanied by the appearance of 3′-truncated transcripts. We have proposed that Nrd1 binds to the exogenous sequence element in the nascent pre-mRNA during transcription, aided by the CTD-binding motif, and directs 3′-end formation a short distance downstream. Here we show that highly purified Nrd1 carboxyl half binds tightly to the RNA element in vitro with sequence specificity that correlates with the efficiency of cis-element-directed down-regulation in vivo. A large deletion in the CTD-binding motif blocks down-regulation but does not affect the essential function of Nrd1. Furthermore, a nonsense mutant allele that produces truncated Nrd1 protein lacking the RRM has a dominant-negative effect on down-regulation but not on cell growth. Viability of this and several other nonsense alleles of Nrd1 appears to require translational readthrough, which in one case is extremely efficient. Thus the CTD-binding motif of Nrd1 is important for pre-mRNA down-regulation but is not required for the essential function of Nrd1. In contrast, the RNA-binding activity of Nrd1 appears to be required both for down-regulation and for its essential function.
Resumo:
PDZ and LIM domains are modular protein interaction motifs present in proteins with diverse functions. Enigma is representative of a family of proteins composed of a series of conserved PDZ and LIM domains. The LIM domains of Enigma and its most related family member, Enigma homology protein, bind to protein kinases, whereas the PDZ domains of Enigma and family member actin-associated LIM protein bind to actin filaments. Enigma localizes to actin filaments in fibroblasts via its PDZ domain, and actin-associated LIM protein binds to and colocalizes with the actin-binding protein α-actinin-2 at Z lines in skeletal muscle. We show that Enigma is present at the Z line in skeletal muscle and that the PDZ domain of Enigma binds to a skeletal muscle target, the actin-binding protein tropomyosin (skeletal β-TM). The interaction between Enigma and skeletal β-TM was specific for the PDZ domain of Enigma, was abolished by mutations in the PDZ domain, and required the PDZ-binding consensus sequence (Thr-Ser-Leu) at the extreme carboxyl terminus of skeletal β-TM. Enigma interacted with isoforms of tropomyosin expressed in C2C12 myotubes and formed an immunoprecipitable complex with skeletal β-TM in transfected cells. The association of Enigma with skeletal β-TM suggests a role for Enigma as an adapter protein that directs LIM-binding proteins to actin filaments of muscle cells.