986 resultados para REFORMATSKY-TYPE REACTION
Resumo:
Although several immunologic and virologic markers measured in peripheral blood are useful for predicting accelerated progression of human immunodeficiency virus (HIV) disease, their validity for evaluating the response to antiretroviral therapy and their ability to accurately reflect changes in lymphoid organs remain unclear. In the present study, changes in certain virologic markers have been analyzed in peripheral blood and lymphoid tissue during antiretroviral therapy. Sixteen HIV-infected individuals who were receiving antiretroviral therapy with zidovudine for > or = 6 months were randomly assigned either to continue on zidovudine alone or to add didanosine for 8 weeks. Lymph node biopsies were performed at baseline and after 8 weeks. Viral burden (i.e., HIV DNA copies per 10(6) mononuclear cells) and virus replication in mononuclear cells isolated from peripheral blood and lymph node and plasma viremia were determined by semiquantitative polymerase chain reaction assays. Virologic and immunologic markers remained unchanged in peripheral blood and lymph node of patients who continued on zidovudine alone. In contrast, a decrease in virus replication in lymph nodes was observed in four of six patients who added didanosine to their regimen, and this was associated with a decrease in plasma viremia. These results indicate that decreases in plasma viremia detected during antiretroviral therapy reflect downregulation of virus replication in lymphoid tissue.
Resumo:
The integrase protein of human immunodeficiency virus type 1 is necessary for the stable integration of the viral genome into host DNA. Integrase catalyzes the 3' processing of the linear viral DNA and the subsequent DNA strand transfer reaction that inserts the viral DNA ends into host DNA. Although full-length integrase is required for 3' processing and DNA strand transfer activities in vitro, the central core domain of integrase is sufficient to catalyze an apparent reversal of the DNA strand transfer reaction, termed disintegration. This catalytic core domain, as well as the full-length integrase, has been refractory to structural studies by x-ray crystallography or NMR because of its low solubility and propensity to aggregate. In an attempt to improve protein solubility, we used site-directed mutagenesis to replace hydrophobic residues within the core domain with either alanine or lysine. The single substitution of lysine for phenylalanine at position 185 resulted in a core domain that was highly soluble, monodisperse in solution, and retained catalytic activity. This amino acid change has enabled the catalytic domain of integrase to be crystallized and the structure has been solved to 2.5-A resolution [Dyda, F., Hickman, A. B., Jenkins, T. M., Engelman, A., Craigie, R. & Davies, D. R. (1994) Science 266, 1981-1986]. Systematic replacement of hydrophobic residues may be a useful strategy to improve the solubility of other proteins to facilitate structural and biochemical studies.
Resumo:
The reduced progesterone metabolite tetrahydroprogesterone (3 alpha-hydroxy-5 alpha-pregnan-20-one; 3 alpha,5 alpha-THP) is a positive modulator of the gamma-aminobutyric acid type A (GABAA) receptor. Experiments performed in vitro with hypothalamic fragments have previously shown that GABA could modulate the release of gonadotropin-releasing hormone (GnRH). Using GT1-1 immortalized GnRH neurons, we investigated the role of GABAA receptor ligands, including 3 alpha,5 alpha-THP, on the release of GnRH. We first characterized the GABAA receptors expressed by these neurons. [3H]Muscimol, but not [3H]flunitrazepam, bound with high affinity to GT1-1 cell membranes (Kd = 10.9 +/- 0.3 nM; Bmax = 979 +/- 12 fmol/mg of protein), and [3H]muscimol binding was enhanced by 3 alpha,5 alpha-THP. mRNAs encoding the alpha 1 and beta 3 subunits of the GABAA receptor were detected by the reverse transcriptase polymerase chain reaction. In agreement with binding data, the benzodiazepine-binding gamma subunit mRNA was absent. GnRH release studies showed a dose-related stimulating action of muscimol. 3 alpha,5 alpha-THP not only modulated muscimol-induced secretion but also stimulated GnRH release when administered alone. Bicuculline and picrotoxin blocked the effects of 3 alpha,5 alpha-THP and muscimol. Finally, we observed that GT1-1 neurons convert progesterone to 3 alpha,5 alpha-THP. We propose that progesterone may increase the release of GnRH by a membrane mechanism, via its reduced metabolite 3 alpha,5 alpha-THP acting at the GABAA receptor.
Resumo:
We report characterization of a human T-cell lymphotropic virus type II (HTLV-II) isolated from an interleukin 2-dependent CD8 T-cell line derived from peripheral blood mononuclear cells of a healthy, HTLV-II-seropositive female Bakola Pygmy, aged 59, living in a remote equatorial forest area in south Cameroon. This HTLLV-II isolate, designated PYGCAM-1, reacted in an indirect immunofluorescence assay with HTLV-II and HTLV-I polyclonal antibodies and with an HTLV-I/II gp46 monoclonal antibody but not with HTLV-I gag p19 or p24 monoclonal antibodies. The cell line produced HTLV-I/II p24 core antigen and retroviral particles. The entire env gene (1462 bp) and most of the long terminal repeat (715 bp) of the PYGCAM-1 provirus were amplified by the polymerase chain reaction using HTLV-II-specific primers. Comparison with the long terminal repeat and envelope sequences of prototype HTLV-II strains indicated that PYGCAM-1 belongs to the subtype B group, as it has only 0.5-2% nucleotide divergence from HTLV-II B strains. The finding of antibodies to HTLV-II in sera taken from the father of the woman in 1984 and from three unrelated members of the same population strongly suggests that PYGCAM-1 is a genuine HTLV-II that has been present in this isolated population for a long time. The low genetic divergence of this African isolate from American isolates raises questions about the genetic variability over time and the origin and dissemination of HTLV-II, hitherto considered to be predominantly a New World virus.
Resumo:
The selective production of 2-methyltetrahydrofuran from levulinic acid has been effectively conducted using designed Cu based catalysts and compared with a commercial Pd/C system under microwave irradiation. Optimised conditions for the most active catalysts Cu-MINT (>90% conversion, 75% selectivity to MTHF) and Pd/C (78% conversion, 92% selectivity to MTHF) were further translated into a continuous flow process using the proposed catalysts to find out the deactivation of Cu-MINT under flow conditions (79 vs. 13% conversion with a switch in selectivity to products after 30 min in flow), the high stability of Pd/C (73 vs. 70% conversion at stable selectivity under analogous conditions to those of Cu-MINT) but, most importantly, different relevant pathways to valuable products from levulinic acid depending on the type of catalyst employed.
Resumo:
This work explores the multi-element capabilities of inductively coupled plasma - mass spectrometry with collision/reaction cell technology (CCT-ICP-MS) for the simultaneous determination of both spectrally interfered and non-interfered nuclides in wine samples using a single set of experimental conditions. The influence of the cell gas type (i.e. He, He+H2 and He+NH3), cell gas flow rate and sample pre-treatment (i.e. water dilution or acid digestion) on the background-equivalent concentration (BEC) of several nuclides covering the mass range from 7 to 238 u has been studied. Results obtained in this work show that, operating the collision/reaction cell with a compromise cell gas flow rate (i.e. 4 mL min−1) improves BEC values for interfered nuclides without a significant effect on the BECs for non-interfered nuclides, with the exception of the light elements Li and Be. Among the different cell gas mixtures tested, the use of He or He+H2 is preferred over He+NH3 because NH3 generates new spectral interferences. No significant influence of the sample pre-treatment methodology (i.e. dilution or digestion) on the multi-element capabilities of CCT-ICP-MS in the context of simultaneous analysis of interfered and non-interfered nuclides was observed. Nonetheless, sample dilution should be kept at minimum to ensure that light nuclides (e.g. Li and Be) could be quantified in wine. Finally, a direct 5-fold aqueous dilution is recommended for the simultaneous trace and ultra-trace determination of spectrally interfered and non-interfered elements in wine by means of CCT-ICP-MS. The use of the CCT is mandatory for interference-free ultra-trace determination of Ti and Cr. Only Be could not be determined when using the CCT due to a deteriorated limit of detection when compared to conventional ICP-MS.
Resumo:
The bioelectrocatalytic (oxygen reduction reaction, ORR) properties of the multicopper oxidase CueO immobilized on gold electrodes were investigated. Macroscopic electrochemical techniques were combined with in situ scanning tunneling microscopy (STM) and surface-enhanced Raman spectroscopy at the ensemble and at the single-molecule level. Self-assembled monolayer of mercaptopropionic acid, cysteamine, and p-aminothiophenol were chosen as redox mediators. The highest ORR activity was observed for the protein attached to amino-terminated adlayers. In situ STM experiments revealed that the presence of oxygen causes distinct structure and electronic changes in the metallic centers of the enzyme, which determine the rate of intramolecular electron transfer and, consequently, affect the rate of electron tunneling through the protein. Complementary Raman spectroscopy experiments provided access for monitoring structural changes in the redox state of the type 1 copper center of the immobilized enzyme during the CueO-catalyzed oxygen reduction cycle. These results unequivocally demonstrate the existence of a direct electronic communication between the electrode substrate and the type 1 copper center.
Resumo:
Thermosetting blends of a biodegradable poly(ethylene glycol)-type epoxy resin (PEG-ER) and poly(epsilon-caprolactone) (PCL) were prepared via an in situ curing reaction of poly(ethylene glycol) diglycidyl ether (PEGDGE) and maleic anhydride (MAH) in the presence of PCL. The miscibility, phase behavior, crystallization, and morphology of these blends were investigated. The uncured PCL/PEGDGE blends were miscible, mainly because of the entropic contribution, as the molecular weight of PEGDGE was very low. The crystallization and melting behavior of both PCL and the poly(ethylene glycol) (PEG) segment of PEGDGE were less affected in the uncured PCL/PEGDGE blends because of the very close glass-transition temperatures of PCL and PEGDGE. However, the cured PCL/PEG-ER blends were immiscible and exhibited two separate glass transitions, as revealed by differential scanning calorimetry and dynamic mechanical analysis. There existed two phases in the cured PCL/PEG-ER blends, that is, a PCL-rich phase and a PEG-ER crosslinked phase composed of an MAH-cured PEGDGE network. The crystallization of PCL was slightly enhanced in the cured blends because of the phase-separated nature; meanwhile, the PEG segment was highly restricted in the crosslinked network and was noncrystallizable in the cured blends. The phase structure and morphology of the cured PCL/PEG-ER blends were examined with scanning electron microscopy; a variety of phase morphologies were observed that depended on the blend composition. (C) 2004 Wiley Periodicals, Inc.
Resumo:
A 5'-nuclease real-time reverse transcriptase-polymerase chain reaction assay was developed for the detection of influenza type A and was validated using a range of influenza A subtypes, including avian strains, and 126 nasopharyngeal aspirate samples. The results show the assay is suitable for screening for influenza A infections, particularly in regions where avian strains may be circulating. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
We completed the genome sequence of Lettuce necrotic yellows virus (LNYV) by determining the nucleotide sequences of the 4a (putative phosphoprotein), 4b, M (matrix protein), G (glycoprotein) and L (polymerase) genes. The genome consists of 12,807 nucleotides and encodes six genes in the order 3' leader-N-4a(P)-4b-M-G-L-5' trailer. Sequences were derived from clones of a cDNA library from LNYV genomic RNA and from fragments amplified using reverse transcription-polymerase chain reaction. The 4a protein has a low isoelectric point characteristic for rhabdovirus phosphoproteins. The 4b protein has significant sequence similarities with the movement proteins of capillo- and trichoviruses and may be involved in cell-to-cell movement. The putative G protein sequence contains a predicted 25 amino acids signal peptide and endopeptidase cleavage site, three predicted glycosylation sites and a putative transmembrane domain. The deduced L protein sequence shows similarities with the L proteins of other plant rhabdoviruses and contains polymerase module motifs characteristic for RNA-dependent RNA polymerases of negative-strand RNA viruses. Phylogenetic analysis of this motif among rhabdoviruses placed LNYV in a group with other sequenced cytorhabdoviruses, most closely related to Strawberry crinkle virus. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Application of a computational membrane organization prediction pipeline, MemO, identified putative type II membrane proteins as proteins predicted to encode a single alpha-helical transmembrane domain (TMD) and no signal peptides. MemO was applied to RIKEN's mouse isoform protein set to identify 1436 non-overlapping genomic regions or transcriptional units (TUs), which encode exclusively type II membrane proteins. Proteins with overlapping predicted InterPro and TMDs were reviewed to discard false positive predictions resulting in a dataset comprised of 1831 transcripts in 1408 TUs. This dataset was used to develop a systematic protocol to document subcellular localization of type II membrane proteins. This approach combines mining of published literature to identify subcellular localization data and a high-throughput, polymerase chain reaction (PCR)-based approach to experimentally characterize subcellular localization. These approaches have provided localization data for 244 and 169 proteins. Type II membrane proteins are localized to all major organelle compartments; however, some biases were observed towards the early secretory pathway and punctate structures. Collectively, this study reports the subcellular localization of 26% of the defined dataset. All reported localization data are presented in the LOCATE database (http://www.locate.imb.uq.edu.au).
Resumo:
The devastating impact of Type 2 Diabetes Mellitus (T2DM) -related morbidity and mortality on global healthcare is escalating with higher prevalences of obesity, poor diet, and sedentary lifestyles. Therefore, the clinical need for early diagnosis and prevention in groups of high-risk individuals is necessary. The purpose of this thesis was to investigate the use of surrogate markers, namely retinal vascular function, to determine future vascular endothelial dysfunction, atherosclerosis, large vessel disease and cardiovascular risk in certain groups. This namely covered normoglycaemic and normotensive South Asians (SAs), those with Impaired-Glucose Tolerance (IGT) and individuals with a familial history (FH) of T2DM. Additionally the effect of overweight and obesity was studied. The techniques and modified protocols adopted for this thesis involved the investigation of endothelial function by means of vascular reactivity at the ocular and systemic level. Furthermore, the relationships between retinal and systemic function with circulating markers for endothelial cell function and cardiovascular risk markers were explored. The principal studies and findings of the research were: Vascular Function in Normoglycaemic Individuals with and without a FH of T2DM WE FH individuals exhibited higher levels of total cholesterol levels that correlated well with the retinal arterial dilation amplitude to flicker light stimulus. However this did not extend to noticeable differences in markers for endothelial cell damage and impaired retinal and systemic function. Vascular Function in Normoglycaemic South-Asians vs. White-Europeans without a FH and Vascular Disturbances Compared to healthy WEs (normo -glycaemic and -tensive), SA participants exhibited levels of dyslipidaemia and a state of oxidative stress that extended to impaired vascular function as detected by reduced brachial artery flow-mediated dilation, slower retinal arterial vessel dilation reaction times (Appendix 3) and steeper constriction profiles. Furthermore, gender sub-group analysis presented in a sub-chapter shows that SA males demonstrated 24-hour systemic blood pressure (BP) and heart rate variability (HRV) abnormalities and heightened cardiovascular disease (CVD) risk. Vascular Function in Individuals Newly Diagnosed with IGT as compared to Normoglycaemic Healthy Controls Newly-diagnosed WE and SA IGT patients showed a greater risk for CVD and T2DM progression by means of 24-hour BP abnormalities, dyslipidaemia, increased carotid artery intimal-media thickness (c-IMT), Framingham scores and cholesterol ratios. Additionally, pre-clinical markers for oxidative stress and endothelial dysfunction, as evident by significantly lower levels of plasma glutathione and increased levels of von-Willebrand factor in IGT individuals, extended to impaired vascular systemic and retinal function compared to normal controls. This originally shows retinal, systemic and biochemical disturbances in newly-diagnosed IGT not previously reported before. Vascular Function in Normal, Overweight and Obese Individuals of SA and WE Ethnicity In addition to the intended study chapters, the thesis also investigated the influence of obesity and overweight on vascular function. Most importantly, it was found for the first time that compared to lean individuals it was overweight and not obese individuals that exhibited signs of vascular systemic and ocular dysfunction that was evident alongside markers of atherosclerosis, CVD risk and endothelial damage.
Resumo:
It has been previously established that alkali silica reaction (ASR) in concrete may be controlled by blending Portland cement with suitable hydraulic or pozzolanic materials. The controlling mechanism has been attributed to the dilution of the cement's alkali content and reduced mobility of ions in concrete's pore solution. In this project an attempt has been made to identify the factors which influence the relative importance of each mechanism in the overall suppression of the reaction by the use of blended cements. The relationship between the pore solution alkalinity and ASR was explored by the use of expansive mortar bars submerged in alkaline solutions of varying concentration. This technique enabled the blended cement's control over expansion to be assessed at given `pore solution' alkali concentrations. It was established that the cement blend, the concentration and quantity of alkali present in the pore solution were the factors which determined the rate and extent of ASR. The release of alkalis into solution by Portland cements of various alkali content was studied by analysis of pore solution samples expressed from mature specimens. The specification for avoiding ASR by alkali limitation, both by alkali content of cement and the total quantity of alkali were considered. The effect on the pore solution alkalinity when a range of Portland cements were blended with various replacement materials was measured. It was found that the relationship between the type of replacement material, its alkali content and that of the cement were the factors which primarily determined the extent of the pore solution alkali dilution effect. It was confirmed that salts of alkali metals of the kinds found as common concrete contaminants were able to increase the pore solution hydroxyl ion concentration significantly. The increase was limited by the finite anion complexing ability of the cement.
Resumo:
A group of lithologically varied UK aggregates have been incorporated into concrete prisms of variable alkali content to ascertain the alkali levels at which significant ASR first occurs at 38oC and 100% RH. Petrographical analysis was used to establish the source of reactivity. The results of these expansion tests showed that significant ASR can develop with certain aggregates at initial alkali levels as low as 3.5 kg/m3 Na2Oe. Similar prisms were made at initial alkali levels, well above, on and just below the alkali thresholds for each aggregate. These prisms were placed in salt solution to establish the effects of ASR. The results showed that an external source of NaCl does accentuate ASR in high alkali mixes. However, in low alkali mixes the ASR initiated was even greater than that developed by the high alkali mixes. It was proposed that an `initial alkali pessimum' existed for each aggregate type for specimens placed in salt solution. Electron microprobe analysis of the ASR gels from concretes immersed in salt solution, showed that two compositionally varied gel suites develop. The first suite was derived from ASR caused by the initial alkalis in a concrete mix and was identical to ASR gels derived from the various concretes when immersed in distilled water. The second suite was developed by alkalis derived from a reaction between NaCl and the C3A component of the cement paste. It was demonstrated that the `initial alkali pessimum' was probably due to a combination of these two ASR types at the alkali threshold point where both suites of ASR gel can develop. Equivalent mixes were made with a 25% replacement of the cement by pulverised fuel ash (pfa) to establish whether alkalis released from the pfa could initiate ASR in otherwise non-reactive low alkali mixes. The addition of air entrainment to reactive concrete mixes was also examined as a method of suppressing ASR.
Resumo:
Over the last decade, television screens and display monitors have increased in size considerably, but has this improved our televisual experience? Our working hypothesis was that the audiences adopt a general strategy that “bigger is better.” However, as our visual perceptions do not tap directly into basic retinal image properties such as retinal image size (C. A. Burbeck, 1987), we wondered whether object size itself might be an important factor. To test this, we needed a task that would tap into the subjective experiences of participants watching a movie on different-sized displays with the same retinal subtense. Our participants used a line bisection task to self-report their level of “presence” (i.e., their involvement with the movie) at several target locations that were probed in a 45-min section of the movie “The Good, The Bad, and The Ugly.” Measures of pupil dilation and reaction time to the probes were also obtained. In Experiment 1, we found that subjective ratings of presence increased with physical screen size, supporting our hypothesis. Face scenes also produced higher presence scores than landscape scenes for both screen sizes. In Experiment 2, reaction time and pupil dilation results showed the same trends as the presence ratings and pupil dilation correlated with presence ratings, providing some validation of the method. Overall, the results suggest that real-time measures of subjective presence might be a valuable tool for measuring audience experience for different types of (i) display and (ii) audiovisual material.