997 resultados para REFLECTANCE-DIFFERENCE SPECTROSCOPY


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Several tools of precision agriculture have been developed for specific uses. However, this specificity may hinder the implementation of precision agriculture due to an increasing in costs and operational complexity. The use of vegetation index sensors which are traditionally developed for crop fertilization, for site-specific weed management can provide multiple utilizations of these sensors and result in the optimization of precision agriculture. The aim of this study was to evaluate the relationship between reflectance indices of weeds obtained by the GreenSeekerTM sensor and conventional parameters used for weed interference quantification. Two experiments were conducted with soybean and corn by establishing a gradient of weed interference through the use of pre- and post-emergence herbicides. The weed quantification was evaluated by the normalized difference vegetation index (NDVI) and the ratio of red to near infrared (Red/NIR) obtained using the GreenSeekerTM sensor, the visual weed control, the weed dry matter, and digital photographs, which supplied information about the leaf area coverage proportions of weed and straw. The weed leaf coverage obtained using digital photography was highly associated with the NDVI (r = 0.78) and the Red/NIR (r = -0.74). The weed dry matter also positively correlated with the NDVI obtained in 1 m linear (r = 0.66). The results indicated that the GreenSeekerTM sensor originally used for crop fertilization could also be used to obtain reflectance indices in the area between rows of crops to support decision-making programs for weed control.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Polarized reflectance measurements of the quasi I-D charge-transfer salt (TMTSFh CI04 were carried out using a Martin-Puplett-type polarizing interferometer and a 3He refrigerator cryostat, at several temperatures between 0.45 K and 26 K, in the far infrared, in the 10 to 70 cm- 1 frequency range. Bis-tetramethyl-tetraselena-fulvalene perchlorate crystals, grown electrochemically and supplied by K. Behnia, of dimensions 2 to 4 by 0.4 by 0.2 mm, were assembled on a flat surface to form a mosaic of 1.5 by 3 mm. The needle shaped crystals were positioned parallel to each other along their long axis, which is the stacking direction of the planar TMTSF cations, exposing the ab plane face (parallel to which the sheets of CI04 anions are positioned). Reflectance measurements were performed with radiation polarized along the stacking direction in the sample. Measurements were carried out following either a fast (15-20 K per minute) or slow (0.1 K per minute) cooling of the sample. Slow cooling permits the anions to order near 24 K, and the sample is expected to be superconducting below 1.2 K, while fast cooling yields an insulating state at low temperatures. Upon the slow cooling the reflectance shows dependence with temperature and exhibits the 28 cm- 1 feature reported previously [1]. Thermoreflectance for both the 'slow' and 'fast' cooling of the sample calculated relative to the 26 K reflectance data indicates that the reflectance is temperature dependent, for the slow cooling case only. A low frequency edge in the absolute reflectance is assigned an electronic origin given its strong temperature dependence in the relaxed state. We attribute the peak in the absolute reflectance near 30 cm-1 to a phonon coupled to the electronic background. Both the low frequency edge and the 30 cm-1 feature are noted te shift towards higher frequcncy, upon cntering the superconducting state, by an amount of the order of the expected superconducting energy gap. Kramers-Kronig analysis was carried out to determine the optical conductivity for the slowly cooled sample from the measured reflectance. In order to do so the low frequency data was extrapolated to zero frequency using a Hagen-Ru bens behaviour, and the high frequency data was extended with the data of Cao et al. [2], and Kikuchi et al. [3]. The real part of the optical conductivity exhibits an asymmetric peak at 35 cm-1, and its background at lower frequencies seems to be losing spectral weight with lowering of the temperature, leading us to presume that a narrow peak is forming at even lower frequencies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The reflectance of thin films of magnesium doped SrRu03(Mg-SR0) produced by pulsed laser deposition on SrTiOa (100) substrates has been measured at room temperature between 100 and 7500 cm~^. The films were chosen to have wide range of thickness, stoichiometry and electrical properties. As the films were very thin (less than 300 nm), and some were insulating the reflectance data shows structures due to both the film and the substrate. Hence, the data was analyzed using Kramers-Kronig constrained variational fitting (VDF) method to extract the real optical conductivity of the Mg-SRO films. Although the VDF technique is flexible enough to fit all features of the reflectance spectra, it seems that VDF could not eliminate the substrate's contribution from fllm conductivity results. Also the comparison of the two different programs implementing VDF fltting shows that this technique has a uniqueness problem. The optical properties are discussed in light of the measured structural and transport properties of the fllms which vary with preparation conditions and can be correlated with differences in stoichiometry. This investigation was aimed at checking the VDF technique and also getting answer to the question whether Mg^"*" substitutes in to Ru or Sr site. Analysis of our data suggests that Mg^+ goes to Ru site.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The optical response to far infrared radiation has been measured on a mosaic of heavy fermion CeColnssingle crystals. The superconducting transition temperature of the crystals has been determined by van der Pauw resistivity and ac-susceptibility measurements as Tc = 2.3 K. The optical measurements were taken above and below the transition temperature using a 3He cryostat and step and integrate Martin-Puplett type polarizing interferometer. The absolute reflectance of the heavy fermion CeColns in the superconducting state in range (0, 100)cm-1 was calculated from the measured thermal reflectance, using the normal state data of Singley et al and a low frequency extrapolation for a metallic material in the Hagen-Rubens regime. By means of Kramers-Kronig analysis the absolute reflectance was used to calculate the optical conductivity of the sample. The real part of the calculated complex conductivity 0-(w) ofCeColns indicates a possible opening of an energy gap close to 50 em-I.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new Ultra-High Vacuum (UHV) reflectance spectrometer was successfully designed, making use of a Janis Industries ST-400 sample cryostat, IR Labs bolometer, and Briiker IFS 66 v/S spectrometer. Two of the noteworthy features include an in situ gold evaporator and internal reference path, both of which allow for the experiment to progress with a completely undisturbed sample position. As tested, the system was designed to operate between 4.2 K and 325 K over a frequency range of 60 - 670 cm~^. This frequency range can easily be extended through the addition of appUcable detectors. Tests were performed on SrTiOa, a highly ionic incipient ferroelectric insulator with a well known reflectance. The presence and temperatmre dependence of the lowest frequency "soft" mode were measured, as was the presence of the other two infrared modes. During the structural phase transition from cubic to tetragonal perovskite, the splitting of the second phonon mode was also observed. All of the collected data indicate good agreement with previous measurements, with a minor discrepency between the actual and recorded sample temperatures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The optical response to far infrared radiation has been measured on a mosaic of heavy fermion CeCoIns single crystals. The superconducting transition temperature of the crystals has been determined by van der Pauw resistivity and ac-susceptibility measurements as Tc = 2.3 K. The optical measurements were taken above and below the transition temperature using a ^He cryostat and step and integrate Martin-Puplett type polarizing interferometer. The absolute reflectance of the heavy fermion CeCoIns in the superconducting state in range (0, 100)cm~^ was calculated from the measured thermal reflectance, using the normal state data of Singley et al and a low frequency extrapolation for a metallic material in the Hagen-Rubens regime. By means of Kramers-Kronig analysis the absolute reflectance was used to calculate the optical conductivity of the sample. The real part of the calculated complex conductivity a{u)) of CeCoIns indicates a possible opening of an energy gap close to 50 cm~^.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Low temperature (77K) linear dichroism spectroscopy was used to characterize pigment orientation changes accompanying the light state transition in the cyanobacterium, Synechococcus sp. pee 6301, and cold-hardening in winter rye (Secale cereale L. cv. Puma). Samples were oriented for spectroscopy using the gel squeezing method (Abdourakhmanov et aI., 1979) and brought to 77K in liquid nitrogen. The linear dichroism (LD) spectra of Synechococcus 6301 phycobilisome/thylakoid membrane fragments cross-linked in light state 1 and light state 2 with glutaraldehyde showed differences in both chlorophyll a and phycobilin orientation. A decrease in the relative amplitude of the 681nm chlorophyll a positive LD peak was observed in membrane fragments in state 2. Reorientation of the phycobilisome (PBS) during the transition to state 2 resulted in an increase in core allophycocyanin absorption parallel to the membrane, and a decrease in rod phycocyanin parallel absorption. This result supports the "spillover" and "PBS detachment" models of the light state transition in PBS-containing organisms, but not the "mobile PBS" model. A model was proposed for PBS reorientation upon transition to state 2, consisting of a tilt in the antenna complex with respect to the membrane plane. Linear dichroism spectra of PBS/thylakoid fragments from the red alga, Porphyridium cruentum, grown in green light (containing relatively more PSI) and red light (containing relatively more PSll) were compared to identify chlorophyll a absorption bands associated with each photosystem. Spectra from red light - grown samples had a larger positive LD signal on the short wavelength side of the 686nm chlorophyll a peak than those from green light - grown fragments. These results support the identification of the difference in linear dichroism seen at 681nm in Synechococcus spectra as a reorientation of PSll chromophores. Linear dichroism spectra were taken of thylakoid membranes isolated from winter rye grown at 20°C (non-hardened) and 5°C (cold-hardened). Differences were seen in the orientation of chlorophyll b relative to chlorophyll a. An increase in parallel absorption was identified at the long-wavelength chlorophyll a absorption peak, along with a decrease in parallel absorption from chlorophyll b chromophores. The same changes in relative pigment orientation were seen in the LD of isolated hardened and non-hardened light-harvesting antenna complexes (LHCII). It was concluded that orientational differences in LHCII pigments were responsible for thylakoid LD differences. Changes in pigment orientation, along with differences observed in long-wavelength absorption and in the overall magnitude of LD in hardened and non-hardened complexes, could be explained by the higher LHCII monomer:oligomer ratio in hardened rye (Huner et ai., 1987) if differences in this ratio affect differential light scattering properties, or fluctuation of chromophore orientation in the isolated LHCII sample.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Three cores from the Kearl Lake Oil Sands area within the Athabasca deposit of northeastern Alberta have been analyzed to understand the thermal history of the McMurray and Clearwater formations of the Lower Cretaceous Mannville Group. The approach involves the integration of vitrinite reflectance (VR), Rock-Eval pyrolysis, fluorescence microscopy, and palynology. Mean VR varies between 0.21 and 0.43% Ro and indicates thermally immature levels equivalent to the rank of lignite to sub-bituminous coal. Although differing lithologies have influenced VR to some extent (i.e., coals and bitumen-rich zones), groundwater influence and oxidation seem not to have measurably altered YR. Rock-Eval analysis points to Type III/IV kerogen, and samples rich in amorphous organic matter (ADM) show little to no fluorescence characteristics, implying a terrestrial source of origin. Palynology reveals the presence of some delicate macerals but lack of fluorescence and abundant ADM suggests some degradation and partial oxidation of the samples.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

High chromium content in kimberlite indicator minerals such as pyrope garnet and diopside is often correlated with the presence of diamonds. In this study, kimberlite indicator minerals were examined using visible light reflectance spectroscopy to determine if chromium content can be correlated with spectral absorption features. The depth of absorption features in the visible spectral region were correlated with the molecular percentage of chromium and other first series transition metal elements obtained by electron microprobe data. In the visible part of the spectrum, chromium is evident by 3 absorption features in the pyrope reflectance spectrum; one isolated and narrow feature at the wavelength 689 nm was used to correlate with the chromium mol %. The isolation of this feature in the pyrope spectra is advantageous since it is not directly affected by other proximal absorption bands that could be caused by other transition metals. Analysis of the feature indicates that as grain volume increases the depth of the absorption feature will also increase. Clustering grain volumes into fractions yields better correlation between absorption depth and mol % chromium. Other types of garnet (almandine, grossular, spessartine) and kimberlite indicator minerals (olivine, diopside, chromite, ilmenite) were analyzed to determine if other absorption features could be used to predict the proportion of specific transition metal elements. Diopside in particular illustrates the same isolated chromium absorption feature as pyrope and may indicate mol percent but needs further study with larger sample sets.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Measurements of the optical reflectivity of the normal incident light along c-axis [0001] have been made on a Gadolinium single crystal, for temperatures between 50 K and room temperature just above the Curie temperature of Gd, which is 293 K. And covering the spectrum range between 100 -11000 cm-I . This work is the first study of Gd in the far infrared range. In fact it fills the gap below 0.2 eV which has never been measured before. Extreme attention was paid to the fact that Gadolinium is a very reactive metal with air. Thus, the sample was mechanically polished and carefully handled during the measurement. However, temperature dependent optical measurements have been made in the same frequency range for a sample of Gd2O3. For comparison, both samples of Gd and Gd2O3 were examined by X-Ray diffraction. XRD analysis showed that the sample was pure gadolinium and the oxide layer either does not exist, or is very thin. Furthermore, this fact was supported by the absence of any of Gd2O3 features in the Gd sample reflectivity. Kramers Kronig analysis was applied to extract the optical functions from the reflectance data. The optical conductivity shows a strong temperature dependence feature in the mid-infrared. This feature disappears completely at room temperature which supports a magnetic origin.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Summary: Productivity, botanical composition and forage quality of legume-grass swards are important factors for successful arable farming in both organic and conventional farming systems. As these attributes can vary considerably within a field, a non-destructive method of detection while doing other tasks would facilitate a more targeted management of crops, forage and nutrients in the soil-plant-animal system. This study was undertaken to explore the potential of field spectral measurements for a non destructive prediction of dry matter (DM) yield, legume proportion in the sward, metabolizable energy (ME), ash content, crude protein (CP) and acid detergent fiber (ADF) of legume-grass mixtures. Two experiments were conducted in a greenhouse under controlled conditions which allowed collecting spectral measurements which were free from interferences such as wind, passing clouds and changing angles of solar irradiation. In a second step this initial investigation was evaluated in the field by a two year experiment with the same legume-grass swards. Several techniques for analysis of the hyperspectral data set were examined in this study: four vegetation indices (VIs): simple ratio (SR), normalized difference vegetation index (NDVI), enhanced vegetation index (EVI) and red edge position (REP), two-waveband reflectance ratios, modified partial least squares (MPLS) regression and stepwise multiple linear regression (SMLR). The results showed the potential of field spectroscopy and proved its usefulness for the prediction of DM yield, ash content and CP across a wide range of legume proportion and growth stage. In all investigations prediction accuracy of DM yield, ash content and CP could be improved by legume-specific calibrations which included mixtures and pure swards of perennial ryegrass and of the respective legume species. The comparison between the greenhouse and the field experiments showed that the interaction between spectral reflectance and weather conditions as well as incidence angle of light interfered with an accurate determination of DM yield. Further research is hence needed to improve the validity of spectral measurements in the field. Furthermore, the developed models should be tested on varying sites and vegetation periods to enhance the robustness and portability of the models to other environmental conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A real-time analysis of renewable energy sources, such as arable crops, is of great importance with regard to an optimised process management, since aspects of ecology and biodiversity are considered in crop production in order to provide a sustainable energy supply by biomass. This study was undertaken to explore the potential of spectroscopic measurement procedures for the prediction of potassium (K), chloride (Cl), and phosphate (P), of dry matter (DM) yield, metabolisable energy (ME), ash and crude fibre contents (ash, CF), crude lipid (EE), nitrate free extracts (NfE) as well as of crude protein (CP) and nitrogen (N), respectively in pretreated samples and undisturbed crops. Three experiments were conducted, one in a laboratory using near infrared reflectance spectroscopy (NIRS) and two field spectroscopic experiments. Laboratory NIRS measurements were conducted to evaluate to what extent a prediction of quality parameters is possible examining press cakes characterised by a wide heterogeneity of their parent material. 210 samples were analysed subsequent to a mechanical dehydration using a screw press. Press cakes serve as solid fuel for thermal conversion. Field spectroscopic measurements were carried out with regard to further technical development using different field grown crops. A one year lasting experiment over a binary mixture of grass and red clover examined the impact of different degrees of sky cover on prediction accuracies of distinct plant parameters. Furthermore, an artificial light source was used in order to evaluate to what extent such a light source is able to minimise cloud effects on prediction accuracies. A three years lasting experiment with maize was conducted in order to evaluate the potential of off-nadir measurements inside a canopy to predict different quality parameters in total biomass and DM yield using one sensor for a potential on-the-go application. This approach implements a measurement of the plants in 50 cm segments, since a sensor adjusted sideways is not able to record the entire plant height. Calibration results obtained by nadir top-of-canopy reflectance measurements were compared to calibration results obtained by off-nadir measurements. Results of all experiments approve the applicability of spectroscopic measurements for the prediction of distinct biophysical and biochemical parameters in the laboratory and under field conditions, respectively. The estimation of parameters could be conducted to a great extent with high accuracy. An enhanced basis of calibration for the laboratory study and the first field experiment (grass/clover-mixture) yields in improved robustness of calibration models and allows for an extended application of spectroscopic measurement techniques, even under varying conditions. Furthermore, off-nadir measurements inside a canopy yield in higher prediction accuracies, particularly for crops characterised by distinct height increment as observed for maize.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Diffuse reflectance spectroscopy (DRS) is increasingly being used to predict numerous soil physical, chemical and biochemical properties. However, soil properties and processes vary at different scales and, as a result, relationships between soil properties often depend on scale. In this paper we report on how the relationship between one such property, cation exchange capacity (CEC), and the DRS of the soil depends on spatial scale. We show this by means of a nested analysis of covariance of soils sampled on a balanced nested design in a 16 km × 16 km area in eastern England. We used principal components analysis on the DRS to obtain a reduced number of variables while retaining key variation. The first principal component accounted for 99.8% of the total variance, the second for 0.14%. Nested analysis of the variation in the CEC and the two principal components showed that the substantial variance components are at the > 2000-m scale. This is probably the result of differences in soil composition due to parent material. We then developed a model to predict CEC from the DRS and used partial least squares (PLS) regression do to so. Leave-one-out cross-validation results suggested a reasonable predictive capability (R2 = 0.71 and RMSE = 0.048 molc kg− 1). However, the results from the independent validation were not as good, with R2 = 0.27, RMSE = 0.056 molc kg− 1 and an overall correlation of 0.52. This would indicate that DRS may not be useful for predictions of CEC. When we applied the analysis of covariance between predicted and observed we found significant scale-dependent correlations at scales of 50 and 500 m (0.82 and 0.73 respectively). DRS measurements can therefore be useful to predict CEC if predictions are required, for example, at the field scale (50 m). This study illustrates that the relationship between DRS and soil properties is scale-dependent and that this scale dependency has important consequences for prediction of soil properties from DRS data

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The field of Molecular Spectroscopy was surveyed in order to determine a set of conventions and symbols which are in common use in the spectroscopic literature. This document, which is Part 2 in a series, establishes the notations and conventions used for the description of symmetry in rigid molecules, using the Schoenflies notation. It deals firstly with the symmetry operators of the molecular point groups (also drawing attention to the difference between symmetry operators and elements). The conventions and notations of the molecular point groups are then established, followed by those of the representations of these groups as used in molecular spectroscopy. Further parts will follow, dealing inter alia with permutation and permutation-inversion symmetry notation, vibration-rotation spectroscopy and electronic spectroscopy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Polycrystalline LiH was studied in situ using diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy to investigate the effect water vapour has on the rate of production of the corrosion products, particularly LiOH. The reaction rate of the formation of surface LiOH was monitored by measurement of the hydroxyl (OH) band at 3676 cm(-1). The initial hydrolysis rate of LiH exposed to water vapour at 50% relative humidity was found to be almost two times faster than LiH exposed to water vapour at 2% relative humidity. The hydrolysis rate was shown to be initially very rapid followed by a much slower, almost linear rate. The change in hydrolysis rate was attributed to the formation of a coherent layer of LiOH on the LiH surface. Exposure to lower levels of water vapour appeared to result in the formation of a more coherent corrosion product, resulting in effective passivation of the surface to further attack from water. Crown Copyright (c) 2007 Published by Elsevier B.V. All rights reserved.