962 resultados para RECEPTOR-ASSOCIATED FACTOR
Resumo:
Taste receptors for sweet, bitter and umami tastants are G-protein-coupled receptors (GPCRs). While much effort has been devoted to understanding G-protein-receptor interactions and identifying the components of the signalling cascade downstream of these receptors, at the level of the G-protein the modulation of receptor signal transduction remains relatively unexplored. In this regard a taste-specific regulator of G-protein signaling (RGS), RGS21, has recently been identified. To study whether guanine nucleotide exchange factors (GEFs) are involved in the transduction of the signal downstream of the taste GPCRs we investigated the expression of Ric-8A and Ric-8B in mouse taste cells and their interaction with G-protein subunits found in taste buds. Mammalian Ric-8 proteins were initially identified as potent GEFs for a range of G alpha subunits and Ric-8B has recently been shown to amplify olfactory signal transduction. We find that both Ric-8A and Ric-8B are expressed in a large portion of taste bud cells and that most of these cells contain IP3R-3 a marker for sweet, umami and bitter taste receptor cells. Ric-8A interacts with G alpha-gustducin and G alpha i2 through which it amplifies the signal transduction of hTas2R16, a receptor for bitter compounds. Overall, these findings are consistent with a role for Ric-8 in mammalian taste signal transduction.
Resumo:
P>Brazilian Santa Ines (SI) sheep are very well-adapted to the tropical conditions of Brazil and are an important source of animal protein. A high rate of twin births was reported in some SI flocks. Growth and Differentiation Factor 9 (GDF9) and Bone Morphogenetic Protein 15 (BMP15) are the first two genes expressed by the oocyte to be associated with an increased ovulation rate in sheep. All GDF9 and BMP15 variants characterized, until now, present the same phenotype: the heterozygote ewes have an increased ovulation rate and the mutated homozygotes are sterile. In this study, we have found a new allele of GDF9, named FecGE (Embrapa), which leads to a substitution of a phenylalanine with a cysteine in a conservative position of the mature peptide. Homozygote ewes presenting the FecGE allele have shown an increase in their ovulation rate (82%) and prolificacy (58%). This new phenotype can be very useful in better understanding the genetic control of follicular development; the mechanisms involved in the control of ovulation rate in mammals; and for the improvement of sheep production.
Resumo:
Background and purpose: The contribution of endothelin-1 (ET-1) to vascular hyper-reactivity associated with chronic ethanol intake, a major risk factor in several cardiovascular diseases, remains to be investigated. Experimental approach: The biphasic haemodynamic responses to ET-1 (0.01-0.1 nmol kg(-1), i.v.) or to the selective ET(B) agonist, IRL1620 (0.001-1.0 nmol kg(-1), i.v.), with or without ET(A) or ET(B) antagonists (BQ123 (c(DTrp-Dasp-Pro-Dval-Leu)) at 1 and 2.5 mg kg(-1) and BQ788 (N-cis-2,6-dimethyl-piperidinocarbonyl-L-gamma-methylleucyl1-D-1methoxycarbonyltryptophanyl-D-norleucine) at 0.25 mg kg(-1), respectively) were tested in anaesthetized rats, after 2 weeks` chronic ethanol treatment. Hepatic parameters and ET receptor protein levels were also determined. Key results: The initial hypotensive responses to ET-1 or IRL1620 were unaffected by chronic ethanol intake, whereas the subsequent pressor effects induced by ET-1, but not by IRL1620, were potentiated. BQ123 at 2.5 but not 1 mg kg(-1) reduced the pressor responses to ET-1 in ethanol-treated rats. Conversely, BQ788 (0.25 mg kg(-1)) potentiated ET-1-induced increases in mean arterial blood pressure in control as well as in ethanol-treated rats. Interestingly, in the latter group, increases in heart rate, induced by ET-1 at a dose of 0.025 mg kg(-1) were enhanced following ET(B) receptor blockade. Finally, we observed higher levels of ET(A) receptor in the heart and mesenteric artery and a reduction of ET(B) receptor protein levels in the aorta and kidney from rats chronically treated with ethanol. Conclusions and implications: Increased vascular reactivity to ET-1 and altered protein levels of ET(A) and ET(B) receptors could play a role in the pathogenesis of cardiovascular complications associated with chronic ethanol consumption.
Resumo:
Protease-activated receptor 1 (PAR-1) is a G-protein-coupled receptor that is overexpressed in solid tumors, being associated with several pro-tumoral responses including primary growth, invasion, metastasis and angiogenesis. Expression of PAR-1 in human leukemic cell lines is reported but the status of its expression in human leukemic patients is currently unknown. In this study we evaluated the expression pattern of PAR-1 in patients with the four main types of leukemia - chronic lymphocytic leukemia subtype B (B-CLL), acute lymphoblastic leukemia subtype B (B-ALL), acute myeloid leukemia (AML) and chronic myeloid leukemia (CML). Flow cytometry analyses show that lymphocytes from B-CLL patients express this receptor at similar levels to healthy individuals. On the other hand, it was observed a significant increase in PAR-1 expression in B-ALL lymphocytes as compared to B-CLL and healthy donors. Flow cytometric and real-time PCR demonstrated a significant increase in PAR-1 expression in granulocytes from CML patients in blast phase (CML-BP) but not in chronic phase (CML-CP) as compared to healthy donors. Finally, a significant increase in PAR-1 expression has been also observed in blasts from AML (subtypes M4 and M5) patients, as compared to monocytes or granulocytes from healthy donors. We conclude that PAR-1 might play an important biological role in aggressive leukemias and might offer additional strategies for the development of new therapies. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
The high-affinity receptors for human granulocyte-macrophage colony-stimulating factor (GM-CSF), interleukin-1 (IL-3), and IL-5 are heterodimeric complexes consisting of cytokine-specific alpha subunits and a common signal-transducing beta subunit (h beta c). We have previously demonstrated the oncogenic potential of this group of receptors by identifying constitutively activating point mutations in the extracellular and transmembrane domains of h beta c. We report here a comprehensive screen of the entire h beta c molecule that has led to the identification of additional constitutive point mutations by virtue of their ability to confer factor independence on murine FDC-P1 cells. These mutations were clustered exclusively in a central region of h beta c that encompasses the extracellular membrane-proximal domain, transmembrane domain, and membrane-proximal region of the cytoplasmic domain. Interestingly, most h beta c mutants exhibited cell type-specific constitutive activity, with only two transmembrane domain mutants able to confer factor independence on both murine FDC-P1 and BAF-B03 cells. Examination of the biochemical properties of these mutants in FDC-P1 cells indicated that MAP kinase (ERK1/2), STAT, and JAK2 signaling molecules were constitutively activated. In contrast, only some of the mutant beta subunits were constitutively tyrosine phosphorylated. Taken together; these results highlight key regions involved in h beta c activation, dissociate h beta c tyrosine phosphorylation from MAP kinase and STAT activation, and suggest the involvement of distinct mechanisms by which proliferative signals can be generated by h beta c. (C) 1998 by The American Society of Hematology.
Resumo:
The effects of conjugating cholesterol to either or both ends of a phosphorothioate (PS) oligonucleotide were analyzed in terms of cellular uptake and antisense efficacy. The oligo sequence was directed against the p75 nerve growth factor receptor (p75), and was tested in differentiated PC12 cells, which express high levels of this protein. The addition of a single cholesteryl group to the 5'-end significantly increased cellular uptake and improved p75 mRNA downregulation compared with the unmodified PS oligo, However, only a minor degree of downregulation of p75 protein was obtained with 5' cholesteryl oligos, Three different linkers was used to attach the 5' cholesteryl group but were found not to have any impact on efficacy. Addition of a single cholesteryl group to the 3'-end led to greater p75 mRNA downregulation (31%) and p75 protein downregulation (28%) than occurred with the 5' cholesteryl oligos. The biggest improvement in antisense efficacy, both at the mRNA and protein levels, was obtained from the conjugation of cholesterol to both ends of the oligo. One of the bis-cholesteryl oligos was nearly as effective as cycloheximide at decreasing synthesis of p75, The bis-cholesteryl oligos also displayed significant efficacy at 1 mu M, whereas the other oligos required 5 mu M to be effective. The enhanced efficacy of bis-cholesteryl oligos is likely to be due to a combination of enhanced cellular uptake and resistance to both 5' and 3' exonucleases.
Resumo:
FIBROBLAST growth factors (FGFs) are critical for normal development of the organ of Corti, and may also protect hair cells from ototoxic damage. Four different fibroblast growth factors are known, three of which have different splice variants in the extracellular immunoglobin-like (Ig) III FGF-binding domain, giving different patterns of sensitivity to the different FGFs. Analysis of a cDNA library of rat outer hair cells by the polymerase chain reaction, using isoform specific primers, showed expression only of FGF receptor 3, splice variant IIIc. This allows us to predict the pattern of sensitivity to applied FGFs, may be useful in targeting outer hair cells selectively during an FGF-based strategy for cochlear therapy. (C) 1998 Lippincott Williams & Wilkins.
Resumo:
The high affinity receptor for human granulocyte-macrophage colony-stimulating factor (GM-CSF) consists of a cytokine-specific alpha-subunit (hGMR alpha) and a common signal-transducing beta-subunit (hpc) that is shared with the interleukin-3 and -5 receptors, We have previously identified a constitutively active extracellular point mutant of hpc, I374N, that can confer factor independence on murine FDC-P1 cells but not BAF-B03 or CTLL-2 cells (Jenkins, B. J., D'Andrea, R. J., and Gonda, T. J. (1995) EMBO J. 14, 4276-4287), This restricted activity suggested the involvement of cell type-specific signaling molecules in the activation of this mutant. We report here that one such molecule is the mouse GMR alpha (mGMR alpha) subunit, since introduction of mGMR alpha, but not hGMR alpha, into BAF-B03 or CTLL-2 cells expressing the I374N mutant conferred factor independence, Experiments utilizing mouse/human chimeric GMR alpha subunits indicated that the species specificity lies in the extracellular domain of GMRa. Importantly, the requirement for mGMR alpha correlated with the ability of I374N (but not wild-type hpc) to constitutively associate with mGMRa. Expression of I374N in human factor-dependent UT7 cells also led to factor-independent proliferation, with concomitant up-regulation of hGMR alpha surface expression. Taken together, these findings suggest a critical role for association with GMR alpha in the constitutive activity of I374N.
Resumo:
During mouse embryogenesis, macrophage-like cells arise first in the yolk sac and are produced subsequently in the liver. The onset of liver hematopoiesis is associated with the transition from primitive to definitive erythrocyte production. This report addresses the hypothesis that a similar transition in phenotype occurs in myelopoiesis. We have used whole mount in situ hybridization to detect macrophage-specific genes expressed during mouse development. The mouse c-fms mRNA, encoding the receptor for macrophage colony-stimulating factor (CSF-1), was expressed on phagocytic cells in the yolk sac and throughout the embryo before the onset of liver hematopoiesis, Similar cells were detected using the mannose receptor, the complement receptor (CR3), or the Microphthalmia transcription factor (MITF) as mRNA markers. By contrast, other markers including the F4/80 antigen, the macrophage scavenger receptor, the S-100 proteins, S100A8 and S100A9, and the secretory product lysozyme appeared later in development and appeared restricted to only a subset of c-fms-positive cells. Two-color immunolabeling on disaggregated cells confirmed that CR3 and c-fms proteins are expressed on the same cells. Among the genes appearing later in development was the macrophage-restricted transcription factor, PU.1, which has been shown to be required for normal adult myelopoiesis. Mice with null mutations in PU.1 had normal numbers of c-fms-positive phagocytes at 11.5dpc. PU.1(-/-) embryonic stem cells were able to give rise to macrophagelike cells after cultivation in vitro. The results support previous evidence that yolk sac-derived fetal phagocytes are functionally distinct from those arising in the liver and develop via a different pathway. (C) 1999 by The American Society of Hematology.
Resumo:
S100A8 (also known as CP10 or MRP8) was the first member of the S100 family of calcium-binding proteins shown to be chemotactic for myeloid cells. The gene is expressed together with its dimerization partner S100A9 during myelopoiesis in the fetal liver and in adult bone marrow as well as in mature granulocytes. In this paper we show that S100A8 mRNA is expressed without S100A9 mRNA between 6.5 and 8.5 days postcoitum within fetal cells infiltrating the deciduum in the vicinity of the ectoplacental cone. Targeted disruption of the S100A8 gene caused rapid and synchronous embryo resorption by day 9.5 of development in 100% of homozygous null embryos. Until this point there was no evidence of developmental delay in S100A8(-/-) embryos and decidualization was normal. The results of PCR genotyping around 7.5-8.5 days postcoitum suggest that the null embryos are infiltrated with maternal cells before overt signs of resorption. This work is the first evidence for nonredundant function of a member of the S100 gene family and implies a role in prevention of maternal rejection of the implanting embryo. The S100A8 null provides a new model for studying fetal-maternal interactions during implantation.
Resumo:
Recently, a bi-allelic polymorphism in the glucocorticoid receptor gene (GRL) has been shown to be associated with individuals at high risk of developing hypertension and accumulation of abdominal visceral fat, a known risk factor for cardiovascular disease. The evaluate the role of GRL in essential hypertension and obesity, case-control studies were conducted using 88 hypertensive, 123 normotensive, 150 lean and 94 obese subjects. Genotypes for a highly polymorphic microsatellite marker (D5S207) located within 200 kb of the glucocorticoid receptor gene, were determined by PCR. Allele frequencies between hypertensive and normotensive groups were significantly (P = 0.0005) different whereas no significant differences were observed between lean and obese populations. In conclusion, the results suggest that the glucocorticoid receptor gene or perhaps another gene located in close proximity and in linkage disequilibrium with D5S207, is involved in hypertension development
Resumo:
Enamel-producing cells (ameloblasts) pass through several phenotypic and functional stages during enamel formation. In the transition between secretory and maturation stages, about one quarter of the ameloblasts suddenly undergo apoptosis. We have studied this phenomenon using the continuously erupting rat incisor model. A special feature of this model is that all stages of ameloblast differentiation are presented within a single longitudinal section of the developing tooth. This permits investigation of the temporal sequence of gene and growth factor receptor expression during ameloblast differentiation and apoptosis. We describe the light and electron microscopic morphology of ameloblast apoptosis and the pattern of insulin-like growth factor-1 receptor expression by ameloblasts in the continuously erupting rat incisor model. In the developing rat incisor, ameloblast apoptosis is associated with downregulated expression of the insulin-like growth factor-1 receptor. These data are consistent with the hypothesis that ameloblasts are hard wired for apoptosis and that insulin-like growth factor-1 receptor expression is required to block the default apoptotic pathway. Possible mechanisms of insulin-like growth factor-1 inhibition of ameloblast apoptosis are presented. The rat incisor model may be useful in studies of physiological apoptosis as it presents apoptosis in a predictable pattern in adult tissues.
Resumo:
In previous studies we have shown that the sensitivity of melanoma cell lines to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)induced apoptosis was determined largely by the level of expression of death receptor TRAIL receptor 2 on the cells. However, approximately one-third of melanoma cell lines were resistant to TRAIL, despite expression of high levels of TRAIL receptor 2. The present studies show that these cell lines had similar levels of TRAIL-induced activated caspase-3 as the TRAIL-sensitive lines, but the activated caspase-3 did not degrade substrates downstream of caspase-3 [inhibitor of caspase-activated DNase and poly(ADP-ribose) polymerase]. This appeared to be due to inhibition of caspase-3 by X-linked inhibitor of apoptosis (XIAP) because XIAP was bound to activated caspase-3, and transfection of XIAP into TRAIL-sensitive cell lines resulted in similar inhibition of TRAIL-induced apoptosis. Conversely, reduction of XIAP levels by overexpression of Smac/ DIABLO in the TRAIL-resistant melanoma cells was associated with the appearance of catalytic activity by caspase-3 and increased TRAIL-induced apoptosis. TRAIL was shown to cause release of Smac/DIABLO from mitochondria, but this release was greater in TRAIL-sensitive cell lines than in TRAIL-resistant cell lines and was associated with downregulation of XIAP levels. Furthermore, inhibition of Smac/DIABLO release by overexpression of Bcl-2 inhibited down-regulation of XIAP levels. These results suggest that Smac/DIABLO release from mitochondria and its binding to XIAP are an alternative pathway by which TRAIL induces apoptosis of melanoma, and this pathway is dependent on the release of activated caspase-3 from inhibition by XIAP and possibly other inhibitor of apoptosis family members.
Resumo:
Ozone is a major air pollutant with adverse health effects which exhibit marked inter-individual variability. In mice, regions of genetic linkage with ozone-induced lung injury include the tumor necrosis factor-alpha (TNF), lymphotoxin-alpha (LTA), Toll-like receptor 4 (TLR4), superoxide dismutase (SOD2), and glutathione peroxidase (GPX1) genes. We genotyped polymorphisms in these genes in 51 individuals who had undergone ozone challenge. Mean change in FEV1 with ozone challenge, as a percentage of baseline, was -3% in TNF -308G/A or A/A individuals, compared with -9% in G/G individuals (p = 0.024). When considering TNF haplotypes, the smallest change in FEV1 with ozone exposure was associated with the TNF haplotype comprising LTA +252G/TNF -1031T/TNF -308A/TNF -238G. This association remained statistically significant after correction for age, sex, disease, and ozone concentration (p = 0.047). SOD2 or GPX1 genotypes were not associated with lung function, and the TLR4 polymorphism was too infrequent to analyze. The results of this study support TNF as a genetic factor for susceptibility to ozone-induced changes in lung function in humans, and has potential implications for stratifying health risks of air pollution.