786 resultados para REAGENT
Resumo:
The structure and properties of presumed block copolymers of polypropylene (PP) with ethylene-propylene random copolymers (EPR), i.e., PP-EPR and PP-EPR-PP, have been investigated by viscometry, transmission electron microscopy, dynamic mechanical analysis, differential scanning calorimetry, gel permeation chromatography, wide-angle x-ray diffraction, and other techniques testing various mechanical properties. PP-EPR and PP-EPR-PP were synthesized using delta-TiCl3-Et2AlCl as a catalyst system. The results indicate that the intrinsic viscosity of these polymers increases with each block-building step, whereas the intrinsic viscosity of those prepared by chain transfer reaction (strong chain-transfer reagent hydrogen was introduced between block-building steps during polymerization) hardly changes with the reaction time. Compared with PP / EPR blends, PP-EPR-PP block copolymers have lower PP and polyethylene crystallinity, and lower melting and crystallization temperatures of crystalline EPR. Two relaxation peaks of PP and EPR appear in the dynamic spectra of blends. They merge into a very broad relaxation peak with block sequence products of the same composition, indicating good compatibility between PP and EPR in the presence of block copolymers. Varying the PP and EPR content affects the crystallinity, density, and morphological structure of the products, which in turn affects the tensile strength and elongation at break. Because of their superior mechanical properties, sequential polymerization products containing PP-EPR and PP-EPR-PP block copolymers may have potential as compatibilizing agents for isotactic polypropylene and polyethylene blends or as potential heat-resistant thermoplastic elastomers.
Resumo:
海带根是一种治疗糖尿病的民间中药,在沿海地区有很长的民间用药历史。食用海带根能够有效降低糖尿病患者的血糖,起到治疗作用。本文目的在于发现海带根中抗糖尿病的天然活性物质并分析它们在糖尿病治疗中的靶点;进一步开发一种低价且无毒副作用的化学类新药或中药新药。 α-glucosidase和 PTP-1B是II型糖尿病的两个重要靶点,海带根提取物能同时作用于这两个靶点。通过抑制这两种酶,降低血糖水平,85%乙醇粗提物对两种酶的IC50分别为1589ug/ml、IC50 1271ug/ml。乙酸乙酯相和石油醚相分别抑制α-glucosidase和 PTP-1B,IC50分别为380ug/ml和220ug/ml。因此以α-glucosidase和 PTP-1B的抑制活性为导向,用天然产物化学的方法对活性成分进行追踪分离,寻找单体活性物质进而鉴定其结构。由于乙酸乙酯相具有α-glucosidase抑制活性,用硅胶柱层析(石油醚:丙酮5:1、1:1),(二氯甲烷:甲醇60:1、20:1、5:1),凝胶柱层析Sephadex LH20(二氯甲烷:甲醇1:1),HPLC (80% 甲醇-水),对α-glucosidase抑制剂进行分离,得到组分IC50 为3.6ug/ml。用质谱仪和核磁共振确定结构。 生物活性测定结果表明α-glucosidase和 PTP-1B是两种不同的物质,分别位于乙酸乙酯相和石油醚相。光照实验和高温实验表明抑制α-glucosidase的活性成分对光照和温度敏感。光照48h或者50℃ 12h而且对α-glucosidase的抑制活性显著降低,TLC检测并用FeCl3显色初步表明抑制α-glucosidase的活性成分可能是多数酚类物质。动物实验显示在1450ug/kg剂量下,乙酸乙酯相能够显著降低糖尿病小鼠血糖,与阴性对照组差异极显著(P<0.01)。表明,海带根提取物在体内和体外均呈现出抗糖尿病活性,是一种潜在的抗糖尿病药物。
Resumo:
以奥利亚罗非鱼(Oreochromis aureus)为实验对象,设计了3种不同的摄食类型,分别是鲜活饵料组、饥饿3周后饱食投喂组和人工饲料组。鲜活饵料组投喂冰冻赤子爱胜蚓,利用蚯蚓体内丰富的营养成分和活性物质,以期获得奥利亚罗非鱼良好的生长状况;饥饿后饱食组是指饥饿3周后,以人工饲料饱食投喂2周,用于研究饥饿与补偿生长获得快速生长时血液理化指标的变化情况;人工饲料组作为对照组。纯淡水条件下养殖,水温25±2℃。测定了奥利亚罗非鱼在3种摄食类型饲喂下某些血液生理生化指标变化的情况,并将指标变化情况与增重率做相关性分析,试图找出能够反映奥利亚罗非鱼生长性能的血液生理生化指标。 研究结果表明,奥利亚罗非鱼在饥饿3周后获得了补偿生长,补偿生长时的增重率和特定生长率显著高于人工饲料组(P<0.05),高于鲜活饵料组,但差别不显著;相关性分析研究表明血清总蛋白、胆固醇、四碘甲状腺原氨酸(T4)与增重率极显著相关(P<0.01),血红蛋白显著相关(P<0.05),红细胞、白细胞、碱性磷酸酶高度相关(相关系数为0.580、0.551和0.557),因此,建议血清总蛋白、胆固醇和血红蛋白可作为能够反映罗非鱼生长性能的新指标。 根据序列设计引物,PCR反应条件:变性温度:95 ℃,3 min;退火温度:57℃,20 sec;延伸温度:72℃,5 min,共36个循环,从牙鲆、黑鲪和鲈鱼中克隆出胰岛素样生长因子(IGF-Ⅰ)部分序列,首次证实了IGF-Ⅰ在3种海水鱼中的存在。 利用蛋氨酸与ZnSO4•7H2O,在pH 5.5、80℃下,反应1小时,采用蛋氨酸与硫酸锌2:1的配料比,合成出了产物蛋氨酸螯合锌,蛋氨酸螯合锌外观白色,粉状,室温下微溶于水,不溶于乙醇,并用原子吸收光谱法测定其含锌量为15%,螯合率为88.2%。
Resumo:
2-(2-Phenyl-1H-phenanthro-[9,10-d]imidazole-1-yl)-acetic acid (PPIA) and 2-(9-acridone)-acetic acid (AAA), two novel precolumn fluorescent derivatization reagents, have been developed and compared for analysis of primary aromatic amines by high performance liquid chromatographic fluorescence detection coupled with online mass spectrometric identification. PPIA and AAA react rapidly and smoothly with the aromatic amines on the basis of a condensation reaction using 1-ethyl-3-(3dimethylaminopropyl)-carbodiimide (EDC) as dehydrating catalyst to form stable derivatives with emission wavelengths at 380 and 440 nm, respectively. Taking six primary aromatic amines (aniline, 2-methylaniline, 2-methoxyaniline, 4-methylaniline, 4-chloroaniline, and 4-bromoaniline) as testing compounds, derivatization conditions such as coupling reagent, basic catalyst, reaction temperature and time, reaction solvent, and fluorescent labeling reagent concentration have also been investigated. With the better PPIA method, chromatographic separation of derivatized aromatic amines exhibited a good baseline resolution on an RP column. At the same time, by online mass spectrometric identification with atmospheric pressure chemical ionization (APCI) source in positive ion mode, the PPIA-labeled derivatives were characterized by easy-to-interpret mass spectra due to the prominent protonated molecular ion m/z [M + H](+) and specific fragment ions (MS/MS) m/z 335 and 295. The linear range is 24.41 fmol-200.0 pmol with correlation coefficients in the range of 0.9996-0.9999, and detection limits of PPIA-labeled aromatic amines are 0.12-0.21 nmol/L (S/N = 3). Method repeatability, precision, and recovery were evaluated and the results were excellent for the efficient HPLC analysis. The most important argument, however, was the high sensitivity and ease-of-handling of the PPIA method. Preliminary experiments with wastewater samples collected from the waterspout of a paper mill and its nearby soil where pollution with aromatic amines may be expected show that the method is highly validated with little interference in the chromatogram.
Resumo:
An LC method for the determination of 20 amino acids (AAs), using 1,2-Benzo-3,4-dihydrocarbazole-9-ethyl chloroformate (BCEOC) as fluorescent labeling reagent, has been validated and applied for the analysis of AAs in rat plasma at three different states concerning exercise physiology. Identification of AA derivatives was carried out by LC-MS with electrospray ion (ESI), and the MS-MS cleavage mode of the representative tyrosine (Tyr) derivative was analyzed. Gradient elution on a Hypersil BDS C-18 column gave good separation of the derivatives. Excellent linear responses were observed and good compositional data could be obtained from as little as 50-200 mu L of plasma samples. The contents of 20 AAs in rat plasma of three groups (24 rats, group A: quiet state, group B: at exercising exhaust, group C: 12 h after exercising exhaust) exhibited evident difference corresponding to the physiological states. Facile BCEOC derivatization coupled with LC-FLD-ESI-MS analysis allowed the development of a highly sensitive method for the quantitative analysis of trace level of AAs from plasma or other biochemical samples.
Resumo:
A pre-column derivatization method for sensitive determination of oligopeptides, using the tagging reagent 2-(9-carbazole)ethyl chloroformate (CEOC-Cl) followed by capillary electrophoresis (CE) with diode-array detection, has been developed. Maximum yield close to 100% were observed when a three to fourfold molar excess of reagent was used at pH 9.0-10.0. Excess reagent was extracted with n-hexane-ethyl acetate 9:1-10:1 (v/v); this enabled direct analysis using CE with no significant disturbance from the major fluorescent reagent degradation by-products. The effects on the results of buffer pH and of SDS and organic modifier concentrations were examined. Good baseline resolution in the separation of five CEOC-peptides was achieved with a 48.5-cm total length (effective length 40 cm) 50-mu m inner diameter capillary column.
Resumo:
A method for the determination of long and short chain free fatty acids (FFAs), using 1-[2-(ptoluenesulfonate)-ethyll-2-phenylimidazole-[4,5-f-9,10-phenanthrene (TSPP) as labeling reagent, has been developed. Identification of FFA derivatives was carried out by HPLC-MS with atmospheric pressure chemical ionization (APCI) in positive ion mode. Gradient elution on an Agilent Eclipse XDB-C-8 column gave good separation of the derivatives. Excellent linear responses were observed and good compositional data could be obtained from as little as 200 mg of bryophyte plants and soil samples. Facile TSPP derivatization coupled with HPLC-APCI-MS analysis allowed the development of a highly sensitive method for the quantitative analysis of trace level of FFAs from biological and natural environmental samples.
Resumo:
A pre-column derivatization method for the sensitive determination of aliphatic amines using the labeling reagent 1,2-benzo-3,4-dihydrocarbazole-9-ethyl chloroformate (BCEOC) followed by HPLC with fluorescence detection and APCI/NIS identification in positive-ion mode has been developed. The chromophore of 2-(9-carbazole)-ethyl chloroformate (CEOC) reagent was replaced by the 1,2-benzo-3,4-dihydrocarbazole functional group, which resulted in a sensitive fluorescence derivatizing reagent, BCEOC, that could easily and quickly label amines. Derivatives were stable enough to be efficiently analyzed by HPLC and showed an intense protonated molecular ion corresponding m/z [M + H](+) with APCI/MS in positive-ion mode. The collision induced dissociation of the protonated molecular ion formed characteristic fragment ions at m/z 264.1, m/z 246.0 and m/z 218.1, corresponding to the cleavages of CH2CH2O-CO, CH2CH2-OCO, and N-CH2CH2O bonds. Studies on derivatization conditions demonstrated that excellent derivatization yields close to 100% were observed with a 3 to 4-fold molar reagent excess in acetonitrile solvent, in the presence of borate buffer (pH 9.0) at 40 degrees C for 10 min. In addition, the detection responses for BCEOC derivatives were compared with those obtained with CEOC and FMOC as labeling reagents. The ratios I-BCEOC/I-CEOC and I-BCEOC/I-FMOC were, respectively, 1.40-2.76 and 1.36-2.92 for fluorescence responses (here, I was the relative fluorescence intensity). Separation of the amine derivatives had been optimized on an Eclipse XDB-C-8 column. Detection limits calculated from an 0.10 pmol injection, at a signal-to-noise ratio of 3, were 18.65-38.82 fmol (injection volume 10 mu L for fluorescence detection. The relative standard deviations for intraday determination (n = 6) of standard amine derivatives (50 pmol) were 0.0063-0.037% for retention times and 3.36-6.93% for peak areas. The mean intra-and inter-assay precision for all amines were <5.4% and 5.8%, respectively. The recoveries of amines ranged from 96 to 113%. Excellent linear responses were observed with correlation coefficients of >0.9994. The established method provided a simple and highly sensitive technique for the quantitative analysis of trace amounts of aliphatic amines from biological and natural environmental samples.
Resumo:
A sensitive method for the determination of 30 kinds of free fatty acids (FFAs, C-1-C-30) with 1-[2-(p-toluenesulfonate)-ethyl]-2-phenylimidazole-[4,5-f] 9,10-phenan- threne (TSPP) as labeling reagent and using high performance liquid chromatography with fluorescence detection and identification by online postcolumn mass spectrometry with atmospheric pressure chemical ionization (APCI) source in positive-ion mode (HPLC/MS/APCI) has been developed. TSPP could easily and quickly label FFAs in the presence of K2CO3 catalyst at 90 degrees C for 30 min in N,N-dimethylformamide (DMF) solvent, and maximal labeling yields close to 100% were observed with a 5-fold excess of molar reagent. Derivatives were stable enough to be efficiently analyzed by high performance liquid chromatography. TSPP was introduced into fatty acid molecules and effectively augmented MS ionization of fatty acid derivatives and led to regular MS and MS/MS information. The collision induced cleavage of protonated molecular ions formed specific fragment ions at m/z [MH](+)(molecular ion), m/z [M'+CH2CH2](+)(M' was molecular mass of the corresponding FFA) and m/z 295.0 (the, mass of protonated molecular core structure of TSPP). Fatty acid derivatives were separated on a reversed-phase Eclipse XDB-C-8 column (4.6 x 150 mm, 5 mu m, Agilent) with a good baseline resolution in combination with a gradient elution. Linear ranges of 30 FFAs are 2.441 x 10(-3) to 20 mu mol/L, detection limits are 3.24 similar to 36.97 fmol (injection volume 10 mu L, at a signal-to-noise ratio of 3, S/N 3:1). The mean interday precision ranged from 93.4 to 106.2% with the largest mean coefficients of variation (R.S.D.) < 7,5%. The mean intraday precision for all standards was < 6.4% of the expected concentration. Excellent linear responses were observed with correlation coefficients of > 0.9991. Good compositional data could be obtained from the analysis of extracted fatty acids from as little as 200 mg of bryophyte plant samples.Therefore, the facile TSPP derivatization coupled with HPLC/MS/APCI analysis allowed the development of a highly sensitive method for the quantitation of trace levels of short and long chain fatty acids from biological and natural environmental samples.
Resumo:
A sensitive method for the determination of long-chain fatty acids (LCFAs) (>C20) using 1-[2-(p-toluenesulfonate)-ethyl]-2-phenylimidazole-[4.5-f]-9,10-phenanthrene (TSPP) as tagging reagent with fluorescence detection and identification with post-column APCI/MS has been developed. The LCFAs in bryophyte plant samples were obtained based on distillation extraction with 1: 1 (v/v) chloroform/methanol as extracting solvent. TSPP could easily and quickly label LCFAs at 90 degrees C in the presence of K2CO3 catalyst in DMF. Eleven free LCFAs from the extracts of bryophyte plants were sensitively determined. Maximal labeling yields close to 100% were observed with a five-fold excess of molar reagent. Separation of the derivatized fatty acids exhibited a good baseline resolution in combination with a gradient elution on a reversed-phase Eclipse XDB-C-8 column. Calculated detection limits from 1.0 pmol injection, at a signal-to-noise ratio of 3, were 26.19-76.67 fmol. Excellent linear responses were observed with coefficients of >0.9996. Good compositional data were obtained from the analysis of the extracted LCFAs containing as little as 0.2 g of bryophyte plant samples. Therefore, the facile TSPP derivatization coupled with HPLC/APCI/MS analysis allowed the development of a highly sensitive method for the quantitation of trace levels of LCFAs from biological and natural environmental samples. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
A sensitive method for the determination of free fatty acids using 2-(2-(anthracen-10-yl)-1H-naphtho[2,3-dimidazol-1-yl) ethyl-p-toluenesuIfonate (ANITS) as tagging reagent with fluorescence detection has been developed. ANITS could easily and quickly label fatty acids in the presence of the K2CO3 catalyst at 90 degrees C for 40 min in N,N-dimethylformamide solvent. From the extracts of rape bee pollen samples, 20 free fatty acids were sensitively determined. Fatty acid derivatives were separated on a reversed-phase Eclipse XDB-C8 column by HPLC in conjunction with gradient elution. The corresponding derivatives were identified by post-column APCI/MS in positive-ion detection mode. ANITS-fatty acid derivatives gave an intense molecular ion peak at mlz [M+H](+); with MS/MS analysis, the collision-induced dissociation spectra of m/z [M+H](+) produced the specific fragment ions at mlz [M-345](+) and mlz 345.0 (here, m/z 345 is the core structural moiety of the ANITS molecule). The fluorescence excitation and emission wavelengths of the derivatives were lambda(ex) = 250 nm and lambda(em) = 512 nm, respectively. Linear correlation coefficients for all fatty acid derivatives are > 0.9999. Detection limits, at a signal-to-noise ratio of 3 : 1, are 24.76-98.79 fmol for the labeled fatty acids.
Resumo:
A highly sensitive and accurate method based on the precolumn derivatization of bile acids (BA) with a high ionization efficiency labeling reagent 1,2-benzo-3,4-dihydrocarbazole-9-ethyl-benzenesulfonate (BDEBS) coupled with LC/MS has been developed. After derivatization, BA molecules introduced a weak basic nitrogen atom into the molecular core structure that was readily ionized in commonly used acidic HPLC mobile phases. Derivatives were sufficiently stable to be efficiently analyzed by atmospheric pressure chemical ionization (APCI)-MS/MS in positive-ion mode. The MS/MS spectra of BA derivatives showed an intense protonated molecular ion at m/z [M + H](+). The collision-induced dissociation of the molecular ion produced fragment ions at [MH - H2O](+), [MH - 2H(2)O](+), [MH - 3H(2)O](+). The characteristic fragment ions were at m/z 320.8, 262.8, and 243.7 corresponding to a cleavage of N - CO, O - CO, and C - OCC, respectively, and bonds of derivatized molecules. The selected reaction monitoring, based on the m/z [M + H]+ -> [MH - H2O](+), [MH - H2O](+), [MH - 2H(2)O](+), [MH-3H(2)O](+), 320.8, 262.8, and 243.7 transitions, was highly specific for the BA derivatives. The LODs for APCI in a positive-ion mode, at an S/N of 5, were 44.36-153.6 fmol. The validation results showed high accuracy in the range of 93-107% and the mean interday precision for all standards was < 15% at broad linear dynamic ranges (0.0244-25nmol/mL). Good linear responses were observed with coefficients of > 0.9935 in APCI/MS detection. Therefore, the facile BDEBS derivatization coupled with mass spectrometric analysis allowed the development of a highly sensitive and specific method for the quantitation of trace levels of the free and glycine-conjugated BA from human serum samples.
Resumo:
A simple and sensitive method for the determination of free fatty acids (FFAs) using acridone-9-ethyl-p-toluenesulfonate (AETS) as a fluorescence derivatization reagent by high performance liquid chromatography (HPLC) has been developed. Free fatty acid derivatives were separated on an Eclipse XDB-C-8 column with a good baseline resolution and detected with the fluorescence of which excitation and emission wavelengths of derivatives were set at lambda(ex) 404 and lambda(em) 440 nm, respectively. Identification of 19 fatty acid derivatives was carried out by online post-column mass spectrometry with an atmospheric pressure chemical ionization (APCI) source under positive-ion detection mode. Nineteen FFAs from the extract of Lomatogonium rotatum are sensitively determined. The results indicate that the plant Lomatogonium rotatum is enriched with an abundance of FFAs and FFAs of higher contents, which mainly focus on even carbon atoms, C-14, C-16, and C-18. The validation of the method including linearity, repeatability, and detection limits was examined. Most linear correlation coefficients for fatty acid derivatives are > 0.9989, and detection limits (at signal-to-noise of 3: 1) are 12.3-43.7 fmol. The relative standard deviations (RSDs) of the peak areas and retention times for 19 FFAs standards are < 2.24% and 0.45%, respectively. The established method is rapid and reproducible for the separation determination of FFAs from the extract of Lomatogonium rotatum with satisfactory results.
Resumo:
A pre-column derivatization method for the sensitive determination of amines using the labeling reagent 1,2-benzo-3,4-dihydrocarbazole-9-isopropyl chloroformate (BCIC-Cl) followed by high-performance liquid chromatography with fluorescence detection has been developed. Identification of derivatives is carried out by high performance liquid chromatography/atmospheric pressure chemical ionization (LC-APCl-MS-MS). The chromophore of 2-(9-carbazole)-ethyl chloroformate (CEOC) reagent is replaced by 1,2-benzo-3,4-dihydrocarbazole-9-isopropyl functional group, which results in a sensitive fluorescence derivatizing reagent BCIC-Cl. BCIC-Cl can easily and quickly label amines. Derivatives are stable enough to be efficiently analyzed by high-performance liquid chromatography and show an intense protonated molecular ion corresponding m/z [MH](+) under APCl in positive-ion mode. The collision-induced dissociation of protonated molecular ion formed a product at m/z 260 corresponding to the cleavage of CH2-OCO bond. Studies on derivatization demonstrate excellent derivative yields over the pH 9.0-10.0. Maximal yields close to 100% are observed with a 3 to 4-fold molar reagent excess. In addition, the detection responses for BCIC derivatives are compared with those obtained using CEOC and FMOC as derivatization reagents. The ratios of l(BCIC)/l(CEOC) and l(BCIC)/l(FMOC) are, respectively, 1.23-3.14 and 1.25-3.08 for fluorescent (FL) responses (here, l is relative fluorescence intensity). Separation of the derivatized amines had been optimized on reversed-phase Eclipse XDB-C-8 column. Detection limits are calculated from 1.0 pmol injection, at a signal-to-noise ratio of 3, are 10.6-37.8 fmol. The mean interday accuracy ranges from 94 to 105% for fluorescence detection with the largest mean %CV < 7.5. The mean interday precision for all standards is < 6.0% of the expected concentration. Excellent linear responses are observed with coefficients of > 0.9997.
Resumo:
A simple, sensitive, and mild method for the determination of amino compounds based on a condensation reaction with 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide hydrochloride (EDC-HCI) as the dehydrant with fluorescence detection has been developed. Amines were derivatized to their acidamides with labeling reagent 2-(2-phenyl-1H-phenanthro-[9,10-d]imidazole-1-yl)-acetic acid (PPIA). Studies on derivatization conditions indicated that the coupling reaction proceeded rapidly and smoothly in the presence of a base catalyst in acetonitrile to give the corresponding sensitively fluorescent derivatives with an excitation maximum at lambda(ex) 260nm and an emission maximum at lambda(em) 380nm. The labeled derivatives exhibited high stability and were enough to be efficiently analyzed by high-performance liquid chromatography. Identification of derivatives was carried out by online post-column mass spectrometry (LC/APCI-MS/MS) and showed an intense protonated molecular ion corresponding m/z [MH](+) under APCI in positive-ion mode. At the same time, the fluorescence properties of derivatives in various solvents or at different temperature were investigated. The method, in conjunction with a gradient elution, offered a baseline resolution of the common amine derivatives on a reversed-phase Eclipse XDB-C-8 column. LC separation for the derivatized amines showed good reproducibility with acetonitrile-water as mobile phase. Detection limits calculated from 0.78 pmol injection, at a signal-to-noise ratio of 3, were 3.1-18.2 fmol. The mean intra- and inter-assay precision for all amine levels were < 3.85% and 2.11%, respectively. Excellent linear responses were observed with coefficients of > 0.9996. The established method for the determination of aliphatic amines from real wastewater and biological samples was satisfactory. (c) 2006 Elsevier B.V. All rights reserved.