947 resultados para Quasi-likelihood estimator


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Most adaptive linearization circuits for the nonlinear amplifier have a feedback loop that returns the output signal oj'tne eunplifier to the lineurizer. The loop delay of the linearizer most be controlled precisely so that the convergence of the linearizer should be assured lot this Letter a delay control circuit is presented. It is a delay lock loop (ULL) with it modified early-lute gate and can he easily applied to a DSP implementation. The proposed DLL circuit is applied to an adaptive linearizer with the use of a polynomial predistorter, and the simulalion for a 16-QAM signal is performed. The simulation results show that the proposed DLL eliminates the delay between the reference input signal and the delayed feedback signal of the linearizing circuit perfectly, so that the predistorter polynomial coefficients converge into the optimum value and a high degree of linearization is achieved

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The question of stability of black hole was first studied by Regge and Wheeler who investigated linear perturbations of the exterior Schwarzschild spacetime. Further work on this problem led to the study of quasi-normal modes which is believed as a characteristic sound of black holes. Quasi-normal modes (QNMs) describe the damped oscillations under perturbations in the surrounding geometry of a black hole with frequencies and damping times of oscillations entirely fixed by the black hole parameters.In the present work we study the influence of cosmic string on the QNMs of various black hole background spacetimes which are perturbed by a massless Dirac field.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Large amplitude local density fluctuations in a thin superfluid He film is considered. It is shown that these large amplitude fluctuations travel and behave like "quasi-solitons" under collision, even when the full nonlinearity arising from the Van der Waals potential is taken into account.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A compact, planar, wideband antenna designed by modifying the coplanar waveguide is presented in this letter. The proposed antenna finds a wide range of applications including advanced wireless systems (AWS), DCS-1800, DCS-1900/PCS/PHS, WiBro, BlueTooth/WLAN/WiBree/ZigBee, DMB, Global Star Satellite Phones, and digital cordless phones. Wide bandwidth > 75% centered at 2.50 GHz, quasi-omnidirectional radiation coverage along with moderate gain and efficiency are the salient features of the antenna. A prototype fabricated on a substrate with dielectric constant 4.4 and thickness 1.6 mm occupies an area of (31times 64) mm2. Details of antenna design and discussions on the effect of various antenna parameters on the radiation characteristics are presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The classical methods of analysing time series by Box-Jenkins approach assume that the observed series uctuates around changing levels with constant variance. That is, the time series is assumed to be of homoscedastic nature. However, the nancial time series exhibits the presence of heteroscedasticity in the sense that, it possesses non-constant conditional variance given the past observations. So, the analysis of nancial time series, requires the modelling of such variances, which may depend on some time dependent factors or its own past values. This lead to introduction of several classes of models to study the behaviour of nancial time series. See Taylor (1986), Tsay (2005), Rachev et al. (2007). The class of models, used to describe the evolution of conditional variances is referred to as stochastic volatility modelsThe stochastic models available to analyse the conditional variances, are based on either normal or log-normal distributions. One of the objectives of the present study is to explore the possibility of employing some non-Gaussian distributions to model the volatility sequences and then study the behaviour of the resulting return series. This lead us to work on the related problem of statistical inference, which is the main contribution of the thesis

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Theory Division Department of Physics

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ausgangspunkt der Dissertation ist ein von V. Maz'ya entwickeltes Verfahren, eine gegebene Funktion f : Rn ! R durch eine Linearkombination fh radialer glatter exponentiell fallender Basisfunktionen zu approximieren, die im Gegensatz zu den Splines lediglich eine näherungsweise Zerlegung der Eins bilden und somit ein für h ! 0 nicht konvergentes Verfahren definieren. Dieses Verfahren wurde unter dem Namen Approximate Approximations bekannt. Es zeigt sich jedoch, dass diese fehlende Konvergenz für die Praxis nicht relevant ist, da der Fehler zwischen f und der Approximation fh über gewisse Parameter unterhalb der Maschinengenauigkeit heutiger Rechner eingestellt werden kann. Darüber hinaus besitzt das Verfahren große Vorteile bei der numerischen Lösung von Cauchy-Problemen der Form Lu = f mit einem geeigneten linearen partiellen Differentialoperator L im Rn. Approximiert man die rechte Seite f durch fh, so lassen sich in vielen Fällen explizite Formeln für die entsprechenden approximativen Volumenpotentiale uh angeben, die nur noch eine eindimensionale Integration (z.B. die Errorfunktion) enthalten. Zur numerischen Lösung von Randwertproblemen ist das von Maz'ya entwickelte Verfahren bisher noch nicht genutzt worden, mit Ausnahme heuristischer bzw. experimenteller Betrachtungen zur sogenannten Randpunktmethode. Hier setzt die Dissertation ein. Auf der Grundlage radialer Basisfunktionen wird ein neues Approximationsverfahren entwickelt, welches die Vorzüge der von Maz'ya für Cauchy-Probleme entwickelten Methode auf die numerische Lösung von Randwertproblemen überträgt. Dabei werden stellvertretend das innere Dirichlet-Problem für die Laplace-Gleichung und für die Stokes-Gleichungen im R2 behandelt, wobei für jeden der einzelnen Approximationsschritte Konvergenzuntersuchungen durchgeführt und Fehlerabschätzungen angegeben werden.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work presents Bayes invariant quadratic unbiased estimator, for short BAIQUE. Bayesian approach is used here to estimate the covariance functions of the regionalized variables which appear in the spatial covariance structure in mixed linear model. Firstly a brief review of spatial process, variance covariance components structure and Bayesian inference is given, since this project deals with these concepts. Then the linear equations model corresponding to BAIQUE in the general case is formulated. That Bayes estimator of variance components with too many unknown parameters is complicated to be solved analytically. Hence, in order to facilitate the handling with this system, BAIQUE of spatial covariance model with two parameters is considered. Bayesian estimation arises as a solution of a linear equations system which requires the linearity of the covariance functions in the parameters. Here the availability of prior information on the parameters is assumed. This information includes apriori distribution functions which enable to find the first and the second moments matrix. The Bayesian estimation suggested here depends only on the second moment of the prior distribution. The estimation appears as a quadratic form y'Ay , where y is the vector of filtered data observations. This quadratic estimator is used to estimate the linear function of unknown variance components. The matrix A of BAIQUE plays an important role. If such a symmetrical matrix exists, then Bayes risk becomes minimal and the unbiasedness conditions are fulfilled. Therefore, the symmetry of this matrix is elaborated in this work. Through dealing with the infinite series of matrices, a representation of the matrix A is obtained which shows the symmetry of A. In this context, the largest singular value of the decomposed matrix of the infinite series is considered to deal with the convergence condition and also it is connected with Gerschgorin Discs and Poincare theorem. Then the BAIQUE model for some experimental designs is computed and compared. The comparison deals with different aspects, such as the influence of the position of the design points in a fixed interval. The designs that are considered are those with their points distributed in the interval [0, 1]. These experimental structures are compared with respect to the Bayes risk and norms of the matrices corresponding to distances, covariance structures and matrices which have to satisfy the convergence condition. Also different types of the regression functions and distance measurements are handled. The influence of scaling on the design points is studied, moreover, the influence of the covariance structure on the best design is investigated and different covariance structures are considered. Finally, BAIQUE is applied for real data. The corresponding outcomes are compared with the results of other methods for the same data. Thereby, the special BAIQUE, which estimates the general variance of the data, achieves a very close result to the classical empirical variance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We discuss the possibility of identifying superheavy elements from the observation of their M-shell x-ray spectra, which might occur during the collision of a superheavy element with a heavy target. The same question is discussed for the possible observation of the x-rays from the quasimolecule (quasi-superheavy element) which is formed during such a heavy-ion collision. It is shown that it is very difficult, if not impossible, to determine any information about the interesting quantum electrodynamical effects from the M-shell x-ray spectra of these quasimolecules.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Due to the tremendous spin-orbit splitting of quasi-molecular levels in superheavy collision systems (Z = Z_1 + Z_2 {\ge\approx} 137) bombarding energy 0.5-6 MeV N{^-1}, unusual couplings may occur around Z \simeq 165. Experimental evidence for such a theoretically predicted coupling is discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The potential energy curve of the system Ne-Ne is calculated for small internuclear distances from 0.005 to 3.0 au using a newly developed relativistic molecular Dirac-Fock-Slater code. A significant structure in the potential energy curve is found which leads to a nearly complete agreement with experimental differential elastic scattering cross sections. This demonstrates the presence of quasi-molecular effects in elastic ion-atom collisions at keV energies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Aitchison vector space structure for the simplex is generalized to a Hilbert space structure A2(P) for distributions and likelihoods on arbitrary spaces. Central notations of statistics, such as Information or Likelihood, can be identified in the algebraical structure of A2(P) and their corresponding notions in compositional data analysis, such as Aitchison distance or centered log ratio transform. In this way very elaborated aspects of mathematical statistics can be understood easily in the light of a simple vector space structure and of compositional data analysis. E.g. combination of statistical information such as Bayesian updating, combination of likelihood and robust M-estimation functions are simple additions/ perturbations in A2(Pprior). Weighting observations corresponds to a weighted addition of the corresponding evidence. Likelihood based statistics for general exponential families turns out to have a particularly easy interpretation in terms of A2(P). Regular exponential families form finite dimensional linear subspaces of A2(P) and they correspond to finite dimensional subspaces formed by their posterior in the dual information space A2(Pprior). The Aitchison norm can identified with mean Fisher information. The closing constant itself is identified with a generalization of the cummulant function and shown to be Kullback Leiblers directed information. Fisher information is the local geometry of the manifold induced by the A2(P) derivative of the Kullback Leibler information and the space A2(P) can therefore be seen as the tangential geometry of statistical inference at the distribution P. The discussion of A2(P) valued random variables, such as estimation functions or likelihoods, give a further interpretation of Fisher information as the expected squared norm of evidence and a scale free understanding of unbiased reasoning

Relevância:

20.00% 20.00%

Publicador:

Resumo:

En el año 2002, la Secretaría de Educación de Bogotá estipuló la Resolución 2101 que tenía por objeto asegurar el ciclo de la educación completo en los colegios públicos. El propósito de este trabajo es evaluar el impacto de los mecanismos seguidos a la aplicación de esta política sobre la tasa de deserción escolar. Las escuelas tenían tres mecanismos diferentes para alcanzar el objetivo de la presente resolución: expandir los grados escolares ofertados, integrarse con otros colegios de la zona, o ambos. Para ello, utilizo variables instrumentales para resolver el sesgo causado por el hecho de que los colegios que siguen determinada estrategia eran los que tenían altas tasas de deserción inicialmente. Usando datos sobre las características institucionales y las características socio-demográficas de la población cerca del colegio, evalúo el impacto de estos tres mecanismos sobre las tasas de deserción escolar. Los resultados sugieren que las instituciones que aumentaron los grados experimentan un aumento en el número de estudiantes que abandonan el colegio en 12.1 puntos porcentuales, mientras que las instituciones que complementaron este mecanismo con la integración de un colegio próximo pre existente mostraron una reducción en la tasa de deserción escolar de 9.8 puntos porcentuales.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Resumen tomado de la publicación en catalán. Este artículo forma parte del monográfico 'Internet, un nou context d'aprenentatge?'. El artículo adjunta esta página web: www.lacenet.org