906 resultados para Pseudorandom permutation ensemble
Resumo:
The existence of a small partition of a combinatorial structure into random-like subparts, a so-called regular partition, has proven to be very useful in the study of extremal problems, and has deep algorithmic consequences. The main result in this direction is the Szemeredi Regularity Lemma in graph theory. In this note, we are concerned with regularity in permutations: we show that every permutation of a sufficiently large set has a regular partition into a small number of intervals. This refines the partition given by Cooper (2006) [10], which required an additional non-interval exceptional class. We also introduce a distance between permutations that plays an important role in the study of convergence of a permutation sequence. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
We extend the random permutation model to obtain the best linear unbiased estimator of a finite population mean accounting for auxiliary variables under simple random sampling without replacement (SRS) or stratified SRS. The proposed method provides a systematic design-based justification for well-known results involving common estimators derived under minimal assumptions that do not require specification of a functional relationship between the response and the auxiliary variables.
Resumo:
Feedback stabilization of an ensemble of non interacting half spins described by the Bloch equations is considered. This system may be seen as an interesting example for infinite dimensional systems with continuous spectra. We propose an explicit feedback law that stabilizes asymptotically the system around a uniform state of spin +1/2 or -1/2. The proof of the convergence is done locally around the equilibrium in the H-1 topology. This local convergence is shown to be a weak asymptotic convergence for the H-1 topology and thus a strong convergence for the C topology. The proof relies on an adaptation of the LaSalle invariance principle to infinite dimensional systems. Numerical simulations illustrate the efficiency of these feedback laws, even for initial conditions far from the equilibrium. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
In this work we present the idea of how generalized ensembles can be used to simplify the operational study of non-additive physical systems. As alternative of the usual methods of direct integration or mean-field theory, we show how the solution of the Ising model with infinite-range interactions is obtained by using a generalized canonical ensemble. We describe how the thermodynamical properties of this model in the presence of an external magnetic field are founded by simple parametric equations. Without impairing the usual interpretation, we obtain an identical critical behaviour as observed in traditional approaches.
Resumo:
A new methodology is being devised for ensemble ocean forecasting using distributions of the surface wind field derived from a Bayesian Hierarchical Model (BHM). The ocean members are forced with samples from the posterior distribution of the wind during the assimilation of satellite and in-situ ocean data. The initial condition perturbations are then consistent with the best available knowledge of the ocean state at the beginning of the forecast and amplify the ocean response to uncertainty only in the forcing. The ECMWF Ensemble Prediction System (EPS) surface winds are also used to generate a reference ocean ensemble to evaluate the performance of the BHM method that proves to be eective in concentrating the forecast uncertainty at the ocean meso-scale. An height month experiment of weekly BHM ensemble forecasts was performed in the framework of the operational Mediterranean Forecasting System. The statistical properties of the ensemble are compared with model errors throughout the seasonal cycle proving the existence of a strong relationship between forecast uncertainties due to atmospheric forcing and the seasonal cycle.
Resumo:
[EN]Se propone un modelo de radiación solar adaptativo como una nueva herramienta para la generación de mapas de radiación solar. Este introduce mejoras a los modelos existentes como la adaptación de la malla a la orografía y al albedo. Esta estrategia adaptativa nos permite generar un código eficiente que reduce el coste computacional para una precisión dada. La radiación global es obtenida como suma de sus tres componentes, la directa, la difusa y la reflejada, sobre una región de estudio bajo condiciones de cielo limpio. En este sentido, las superficies inclinadas tendrán un tratamiento diferente de las horizontales y se tendrá en cuenta el efecto de las zonas en sombra…
Resumo:
[EN]Los autores han desarrollado un modelo de viento de masa consistente especialmente diseñado para su aplicación en la escala local y en zonas de orografía compleja. Se ha dotado a este modelo de carácter predictivo usando como entrada resultados de HARMONIE. El HARMONIE es un modelo meteorológico predictivo de escala regional usado en la AEMET. Por otra parte, en los últimos años los métodos ensemble se han consolidado en la predicción meteorológica a escala regional…
Resumo:
[EN]Ensemble forecasting is a methodology to deal with uncertainties in the numerical wind prediction. In this work we propose to apply ensemble methods to the adaptive wind forecasting model presented in. The wind field forecasting is based on a mass-consistent model and a log-linear wind profile using as input data the resulting forecast wind from Harmonie, a Non-Hydrostatic Dynamic model used experimentally at AEMET with promising results. The mass-consistent model parameters are estimated by using genetic algorithms. The mesh is generated using the meccano method and adapted to the geometry…
Resumo:
A permutation is said to avoid a pattern if it does not contain any subsequence which is order-isomorphic to it. Donald Knuth, in the first volume of his celebrated book "The art of Computer Programming", observed that the permutations that can be computed (or, equivalently, sorted) by some particular data structures can be characterized in terms of pattern avoidance. In more recent years, the topic was reopened several times, while often in terms of sortable permutations rather than computable ones. The idea to sort permutations by using one of Knuth’s devices suggests to look for a deterministic procedure that decides, in linear time, if there exists a sequence of operations which is able to convert a given permutation into the identical one. In this thesis we show that, for the stack and the restricted deques, there exists an unique way to implement such a procedure. Moreover, we use these sorting procedures to create new sorting algorithms, and we prove some unexpected commutation properties between these procedures and the base step of bubblesort. We also show that the permutations that can be sorted by a combination of the base steps of bubblesort and its dual can be expressed, once again, in terms of pattern avoidance. In the final chapter we give an alternative proof of some enumerative results, in particular for the classes of permutations that can be sorted by the two restricted deques. It is well-known that the permutations that can be sorted through a restricted deque are counted by the Schrӧder numbers. In the thesis, we show how the deterministic sorting procedures yield a bijection between sortable permutations and Schrӧder paths.
Resumo:
The topic of this work concerns nonparametric permutation-based methods aiming to find a ranking (stochastic ordering) of a given set of groups (populations), gathering together information from multiple variables under more than one experimental designs. The problem of ranking populations arises in several fields of science from the need of comparing G>2 given groups or treatments when the main goal is to find an order while taking into account several aspects. As it can be imagined, this problem is not only of theoretical interest but it also has a recognised relevance in several fields, such as industrial experiments or behavioural sciences, and this is reflected by the vast literature on the topic, although sometimes the problem is associated with different keywords such as: "stochastic ordering", "ranking", "construction of composite indices" etc., or even "ranking probabilities" outside of the strictly-speaking statistical literature. The properties of the proposed method are empirically evaluated by means of an extensive simulation study, where several aspects of interest are let to vary within a reasonable practical range. These aspects comprise: sample size, number of variables, number of groups, and distribution of noise/error. The flexibility of the approach lies mainly in the several available choices for the test-statistic and in the different types of experimental design that can be analysed. This render the method able to be tailored to the specific problem and the to nature of the data at hand. To perform the analyses an R package called SOUP (Stochastic Ordering Using Permutations) has been written and it is available on CRAN.