982 resultados para Proteïnes ras
Resumo:
Cells of the mononuclear phagocyte lineage possess receptors for macrophage colony-stimulating factor (CSF-1) encoded by the c-fms protooncogene and respond to CSF-1 with increased survival, growth, differentiation, and reversible changes in function. The c-fms gene is itself a macrophage differentiation marker. In whole mount analyses of mRNA expression in embryos, c-fms is expressed at very high levels on placental trophoblasts. It is detectable on individual cells in the yolk sac around 8.5 to 9 days postcoitus, appears on isolated cells in the head of the embryo around 9.5 dpc, and appears on numerous cells throughout the embryo by day 10.5. The extent of c-fms expression is much greater than for other macrophage-specific genes including lysozyme and a macrophage-specific protein tyrosine phosphatase. Our studies of the cis-acting elements of the c-fms promoter have indicated a key role for collaboration between the macrophage-specific transcription factor, Pu.1, which functions in determining the site of transcription initiation, and other members of the Ets transcription factor family. This is emerging as a common pattern in macrophage-specific promoters. We have shown that two PU box elements alone can function as a macrophage-specific promoter. The activity of both the artifical promoter and the c-fms promoter is activated synergistically by coexpression of Pu.1 and another Ets factor, c-Ets-2. A 3.5kb c-fms exon 2 promoter (but not the 300bp proximal promoter) is also active in a wide diversity of tumor cell lines. The interesting exception is the melanoma cell line K1735, in which the promoter is completely shut down and expression of c-fms causes growth arrest and cell death. The activity of the exon 2 promoter in these nonmacrophages is at least as serum responsive as the classic serum-responsive promoter of the c-fos gene. It is further inducible in nonmacrophages by coexpression of the c-fms product. Unlike other CSF-1/c-fms-responsive promoters, the c-fms promoter is not responsive to activated Ras even when c-Ets-2 is coexpressed. In most lines, production of full length c-fms is prevented by a downstream intronic terminator, but in Lewis lung carcinoma, read-through does occur, and expression of both c-fms and other macrophage-specific genes such as lysozyme and urokinase becomes detectable in conditions of serum deprivation. (C) 1997 Wiley-Liss, Inc.
Resumo:
A number of studies conducted in humans and in animals have observed that events occurring early in life are associated with the development of diseases in adulthood. Salt overload and restriction during pregnancy and lactation are responsible for functional (hemodynamic and hormonal) and structural alterations in adult offspring. Our group observed that lower birth weight and insulin resistance in adulthood is associated with salt restriction during pregnancy On the other hand, perinatal salt overload is associated with higher blood pressure and higher renal angiotensin II content in adult offspring. Therefore, we hypothesised that renin-angiotensin system (RAS) function is altered by changes in sodium intake during pregnancy. Such changes may influence fetoplacental blood flow and thereby fetal nutrient supply, with effects on growth in utero and, consequently, on birth weight. Female Wistar rats were fed low-salt (LS), normal-salt (NS), or high-salt (HS) diet, starting before conception and continuing until day 19 of pregnancy, Blood pressure, heart rate, fetuses and dams` body weight, placentae weight and litter size were measured on day 19 of pregnancy. Cardiac output, uterine and placental blood flow were also determined on day 19. Expressions of renin-angiotensin system components and of the TNF-alpha gene were evaluated in the placentae. Plasma renin activity (PRA) and plasma and tissue angiotensin-converting enzyme (ACE) activity, as well as plasma and placental levels of angiotensins I, II, and 1-7 were measured. Body weight and kidney mass were greater in HS than in NS and LS dams. Food intake did not differ among the maternal groups. Placental weight was lower in LS dams than in NS and HS dams. Fetal weight was lower in the US group than in the NS and HS groups. The PRA was greater in IS dams than in NS and HS dams, although ACE activity (serum, cardiac, renal, and placental) was unaffected by the level of sodium intake. Placental levels of angiotensins I and II were lower in the HS group than in the ISIS and IS groups. Placental angiotensin receptor type 1 (AT(1)) gene expression and levels of thiobarbituric acid reactive substances (TBARS) were higher in HS dams, as were uterine blood flow and cardiac output. The degree of salt intake did not influence plasma sodium, potassium or creatinine. Although fractional sodium excretion was higher in HS dams than in NS and LS dams, fractional potassium excretion was unchanged. In conclusion, findings from this study indicate that the reduction in fetal weight in response to salt restriction during pregnancy does not involve alterations in uterine-placental perfusion or the RAS. Moreover, no change in fetal weight is observed in response to salt overload during pregnancy. However, salt overload did lead to an increase in placental weight and uterine blood flow associated with alterations in maternal plasma and placental RAS. Therefore, these findings indicate that changes in salt intake during pregnancy lead to alterations in uterine-placental perfusion and fetal growth. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
Sucrose-fed rats, a model of metabolic syndrome, are characterized by insulin resistance, obesity, hypertension, and high plasma levels of triacylglycerols and angiotensin II (Ang II). However, whether tissue renin-angiotensin system (RAS) is altered in metabolic syndrome is unclear. To study this issue, food ad libitum and water (C) or 20% sucrose solution (SC) were given to adult male Wistar rats, for 30 days. Body weight (BW), blood pressure (BP), epididymal adipose tissue (EPI) mass, rate of in vivo fatty acid (FA) synthesis in EPI, circulating glucose, insulin, leptin, angiotensins I and II, triacylglycerols, and plasma renin (PRA) and angiotensin-converting enzyme (ACE) activities were evaluated. In kidneys and EPI, gene and protein expression of type 1 (AT(1)) and 2 (AT(2)) Ang II receptors, ACE, angiotensinogen (ACT) as well as protein expression of angiotensin-converting enzyme 2 (ACE2) were determined. In both tissues, Ang I, Ang II and Ang-(1-7) contents were also measured by HPLC. In SC rats higher BP, EPI mass, circulating triacylglycerols, insulin, leptin, PRA and, Ang II were found. In EPI, the rate of in vivo FA synthesis was associated with increased Ang-(1-7), protein expression of AT(1) and AT(2) receptors, ACE2, ACT, and gene expression of ACT although a reduction in ACE activity and in adipose Ang I and Ang II contents was observed. In kidneys, AT(1) and AT(2), ACE and ACT gene and protein expression as well as protein expression of ACE2 were unaltered while Ang II, Ang-(1-7) and ACE activity increased. These RAS component changes seem to be tissue specific and possibly are related to enhancement of FA synthesis, EPI mass and hypertension. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Resistance training is accompanied by cardiac hypertrophy, but the role of the renin-angiotensin system (RAS) in this response is elusive. We evaluated this question in 36 male Wistar rats divided into six groups: control (n = 6); trained (n = 6); control + losartan (10 mg.kg(-1).day(-1), n = 6); trained + losartan (n = 6); control + high-salt diet (1%, n = 6); and trained + high-salt diet (1%, n = 6). High salt was used to inhibit the systemic RAS and losartan to block the AT(1) receptor. The exercise protocol consisted of: 4 x 12 bouts, 5x/wk during 8 wk, with 65-75% of one repetition maximum. Left ventricle weight-to-body weight ratio increased only in trained and trained + high-salt diet groups (8.5% and 10.6%, P < 0.05) compared with control. Also, none of the pathological cardiac hypertrophy markers, atrial natriuretic peptide, and alpha MHC (alpha-myosin heavy chain)-to-beta MHC ratio, were changed. ACE activity was analyzed by fluorometric assay (systemic and cardiac) and plasma renin activity (PRA) by RIA and remained unchanged upon resistance training, whereas PRA decreased significantly with the high-salt diet. Interestingly, using Western blot analysis and RT-PRC, no changes were observed in cardiac AT(2) receptor levels, whereas the AT(1) receptor gene (56%, P < 0.05) and protein (31%, P < 0.05) expressions were upregulated in the trained group. Also, cardiac ANG II concentration evaluated by ELISA remained unchanged (23.27 +/- 2.4 vs. 22.01 +/- 0.8 pg/mg, P > 0.05). Administration of a subhypotensive dose of losartan prevented left ventricle hypertrophy in response to the resistance training. Altogether, we provide evidence that resistance training-induced cardiac hypertrophy is accompanied by induction of AT(1) receptor expression with no changes in cardiac ANG II, which suggests a local activation of the RAS consistent with the hypertrophic response.
Resumo:
Cellular Prion Protein (PrP(C)) is a cell surface protein highly expressed in the nervous system, and to a lesser extent in other tissues. PrP(C) binds to the extracellular matrix laminin and vitronectin, to mediate cell adhesion and differentiation. Herein, we investigate how PrP(C) expression modulates the aggressiveness of transformed cells. Mesenchymal embryonic cells (MEC) from wildtype (Prnp(+/+)) and PrP(C)-null (Prnp(0/0)) mice were immortalized and transformed by co-expression of ras and myc. These cells presented similar growth rates and tumor formation in vivo. When injected in the tail vein, PrnP(0/0)raS/myc cells exhibited increased lung colonization compared with Prnp(+/+)ras/myc cells. Additionally, Prnp(0/0)ras/myc cells form more aggregates with blood components than Prnp(+/+)ras/myc cells, facilitating the arrest of Prnp(0/0)ras/myc cells in the lung vasculature. Integrin alpha(v)beta(3) is more expressed and activated in MEC and in transformed Prnp(0/0) cells than in the respective Prnp(+/+) cells. The blocking of integrin alpha(v)beta(3) by RGD peptide reduces lung colonization in transformed Prnp(0/0) cells to similar levels of those presented by transformed Prnp(+/+) cells. Our data indicate that PrP(C) negatively modulates the expression and activation of integrin alpha(v)beta(3) resulting in a more aggressive phenotype. These results indicate that PrP(C) may have main implications in modulating metastasis formation. (C) 2009 UICC
Resumo:
Introduction. This study addressed the role of the local renin-angiotensin system (RAS) in the left ventriular hypertropy (LVH) induced by swimming training using pharmacological blockade. Materials and methods. Female Wistar rats treated with enalapril maleate (60 mg.kg(-1).d(-1), n = 38), losartan (20 mg.kg(-1).d(-1), n = 36) or high salt diet (1% NaCl, n = 38) were trained by two protocols (T1: 60-min swimming session, 5 days per week for 10 weeks and T2: the same T1 protocol until the 8(th) week, then 9(th) week they trained twice a day and 10(th) week they trained three times a day). Salt loading prevented activation of the systemic RAS. Haemodynamic parameters, soleus citrate synthase (SCS) activity and LVH (left ventricular/body weight ratio, mg/g) were evaluated. Results. Resting heart rate decreased in all trained groups. SCS activity increased 41% and 106% in T1 and T2 groups, respectively. LVH was 20% and 30% in T1 and T2 groups, respectively. Enalapril prevented 39% of the LVH in T2 group (p < 0.05). Losartan prevented 41% in T1 and 50% in T2 (P < 0.05) of the LVH in trained groups. Plasma renin activity (PRA) was inhibited in all salt groups and it was increased in T2 group. Conclusions. These data provide evidence that the physiological LVH induced by swimming training is regulated by local RAS independent from the systemic, because the hypertrophic response was maintained even when PRA was inhibited by chronic salt loading. However, other systems can contribute to this process.
Resumo:
Purpose: As reported by several authors, angiotensin II (AngII) is a proinflammatory molecule that stimulates the release of inflammatory cytokines and activates nuclear factor kappa B (NF kappa B), being also associated with the increase of cellular oxidative stress. Its production depends on the activity of the angiotensin converting enzyme (ACE) that hydrolyzes the inactive precursor angiotensin I (AngI) into AngII. It has been suggested that AngII underlies the physiopathological mechanisms of several brain disorders such as stroke, bipolar disorder, schizophrenia, and disease. The aim of the present work was to localize and quantify AngII AT1 and AT2 receptors in the cortex and hippocampus of patients with temporal lobe epilepsy related to mesial temporal sclerosis (MTS) submitted to corticoamygdalohippocampectomy for seizure control. Method: Immunohistochemistry, Western blot, and real-time PCR techniques were employed to analyze the expression of these receptors. Results: The results showed an upregulation of AngII AT1 receptor as well as its messenger ribonucleic acid (mRNA) expression in the cortex and hippocampus of patients with MTS. In addition, an increased immunoexpression of AngII AT2 receptors was found only in the hippocampus of these patients with no changes in its mRNA levels. Discussion: These data show, for the first time, changes in components of renin-angiotensin system (RAS) that could be implicated in the physiopathology of MTS.
Resumo:
Objective: MicroRNAs (miRNAs) are small noncoding regulatory RNAs (19-25 nucleotides) that play a major role in regulation of gene expression. They are responsible for the control of fundamental cellular processes that has been reported to be involved in human tumorigenesis. The characterization of miRNA profiles in human tumors is crucial for the understanding of carcinogenesis processes, finding of new tumor markers, and discovering of specific targets for the development of innovative therapies. The aim of this study is to find miRNAs involved in prostate cancer progression comparing the profile of miRNA expressed by localized high grade carcinoma and bone metastasis. Material and methods: Two groups of tumors where submitted to analyses. The first is characterized by 18 patients who underwent radical prostatectomy for treatment of localized high grade prostate carcinoma (PC) with mean Gleason score 8.6, all staged pT3. The second group is composed of 4 patients with metastatic, androgen-independent prostate carcinoma, and 2 PC cell lines. LNCaP derived from a metastatic PC to a lymph node, and another derived from an obstructive, androgen-independent PC (PcBRA1). Expression analysis of 14 miRNAs was carried out using quantitative RT-PCR. Results: miR-let7c, miR-100, and miR-218 were significantly overexpressed by all localized high GS, pT3 PC in comparison with metastatic carcinoma. (35.065 vs. 0.996 P < 0.001), (55.550 vs. 8.314, P = 0.010), and (33.549 vs. 2.748, P = 0.001), respectively. Conclusion: We hypothesize that miR-let7c, miR-100, and miR-218 may be involved in the process of metastasization of PC, and their role as controllers of the expression of RAS, c-myc, Laminin 5 beta 3, THAP2, SMARCA5, and BAZ2A should be matter of additional studies. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
Suppression of the renin-angiotensin system (RAS) during murine lactation causes progressive renal injury, indicating a physiological action of angiotensin II on nephrogenesis. The nuclear factor NF-kappa B system is one of the main intracellular mediators of angiotensin II. We investigated whether inhibition of this system with pyrrolidine dithiocarbamate (PDTC) during rat nephrogenesis would lead to similar hypertension and renal injury as observed with RAS suppressors. Immediately after delivery, 32 Munich-Wistar dams, each nursing 6 male pups, were divided into 2 groups: C, untreated, and PDTC, receiving PDTC, 280 mg kg(-1) day(-1) orally, during 21 days. After weaning, the offspring were followed until 10 months of age without treatment. Adult rats that received neonatal PDTC exhibited stable hypertension and myocardial injury, without albuminuria. To gain additional insight into this process, the renal expression of RAS components and sodium transporters were determined by quantitative real-time PCR (qRT-PCR) at 3 and 10 months of life. Renal renin and angiotensinogen were upregulated at 3 and downregulated at 10 months of age, suggesting a role for early local RAS activation. Likewise, there was early upregulation of the proximal sodium/glucose and sodium/bicarbonate transporters, which abated later in life, suggesting that additional factors sustained hypertension in the long run. The conclusions drawn from the findings were as follows: (1) an intact NF-jB system during nephrogenesis may be essential to normal renal and cardiovascular function in adult life; (2) neonatal PDTC represents a new model of hypertension, lacking overt structural injury or functional impairment of the kidneys; and (3) hypertension in this model seems associated with early temporary activation of renal RAS and sodium transporters. Hypertension Research (2011) 34, 693-700; doi: 10.1038/hr. 2011.4; published online 17 February 2011
Resumo:
The RAS (renin angiotensin system) is classically involved in BP (blood pressure) regulation and water electrolyte balance, and in the central nervous system it has been mostly associated with homoeostatic processes, such as thirst, hormone secretion and thermoregulation. Epilepsies are chronic neurological disorders characterized by recurrent epileptic seizures that affect 1-3% of the world`s population, and the most commonly used anticonvulsants are described to be effective in approx. 70% of the population with this neurological alteration. Using a rat model of epilepsy, we found that components of the RAS, namely ACE (angiotensin-converting enzyme) and the AT(1) receptor (angiotensin II type I receptor) are up-regulated in the brain (2.6- and 8.2-fold respectively) following repetitive seizures. Subsequently, epileptic animals were treated with clinically used doses of enalapril, an ACE inhibitor, and losartan, an AT(1) receptor blocker, leading to a significant decrease in seizure severities. These results suggest that centrally acting drugs that target the RAS deserve further investigation as possible anticonvulsant agents and may represent an additional strategy in the management of epileptic patients.
Resumo:
Small GTPase Rab is a member of a large family of Ras-related proteins, highly conserved in eukaryotic cells, and thought to regulate specific type(s) and/or specific step(s) in intracellular membrane trafficking. Given our interest in synaptic transmission, we addressed the possibility that Rab27 (a close isoform of Rab3) could be involved in cytosolic synaptic vesicle mobilization. Indeed, preterminal injection of a specific antibody against squid Rab27 (anti-sqRab27 antibody) combined with confocal microscopy demonstrated that Rab27 is present on squid synaptic vesicles. Electrophysiological study of injected synapses showed that the anti-sqRab27 antibody inhibited synaptic release in a stimulation-dependent manner without affecting presynaptic action potentials or inward Ca2+ current. This result was confirmed in in vitro synaptosomes by using total internal reflection fluorescence microscopy. Thus, synaptosomal Ca2+-stimulated release of FM1-43 dye was greatly impaired by intraterminal anti-sqRab27 antibody. Ultrastructural analysis of the injected giant preterminal further showed a reduced number of docked synaptic vesicles and an increase in nondocked vesicular profiles distant from the active zone. These results, taken together, indicate that Rab27 is primarily involved in the maturation of recycled vesicles and/or their transport to the presynaptic active zone in the squid giant synapse.
Resumo:
Objective-Ras homolog gene family member A (RhoA)/Rho-kinase-mediated Ca(2+) sensitization is a critical component of constrictor responses. The present study investigates how angiotensin II activates RhoA. Methods and Results-Adenoviral vectors were used to manipulate the expression of regulator of G protein signaling (RGS) domain containing Rho-specific guanine exchange factors (RhoGEFs) and proline-rich tyrosine kinase 2 (PYK2), a nonreceptor tyrosine kinase, in primary rat vascular smooth muscle cells. As an evidence of RhoA activation, RhoA translocation and MYPT1 (the regulatory subunit of myosin light chain phosphatase) phosphorylation were analyzed by Western blot. Results showed that overexpression of PDZ-RhoGEF, but not p115-RhoGEF or leukemia-associated RhoGEF (LARG), enhanced RhoA activation by angiotensin II. Knockdown of PDZ-RhoGEF decreased RhoA activation by angiotensin II. PDZ-RhoGEF was phosphorylated and activated by PYK2 in vitro, and knockdown of PDZ-RhoGEF reduced RhoA activation by constitutively active PYK2, indicating that PDZ-RhoGEF links PYK2 to RhoA. Knockdown of PYK2 or PDZ-RhoGEF markedly decreased RhoA activation by A23187, a Ca(2+) ionophore, demonstrating that PYK2/PDZ-RhoGEF couples RhoA activation to Ca(2+). Conclusions-PYK2 and PDZ-RhoGEF are necessary for angiotensin II-induced RhoA activation and for Ca(2+) signaling to RhoA. (Arterioscler Thromb Vasc Biol. 2009;29:1657-1663.)
Resumo:
Brain excitability diseases like epilepsy constitute one factor that influences brain electrophysiological features. Cortical spreading depression (CSD) is a phenomenon that can be altered by changes in brain excitability. CSD propagation was presently characterized in adult mate and female rats from a normal Wistar strain and from a genetically audiogenic seizure-prone strain, the Wistar audiogenic rat (WAR), both previously submitted (RAS(+)), or not (RAS(-)), to repetitive acoustic stimulation, to provoke audiogenic kindling in the WAR-strain. A gender-specific change in CSD-propagation was found. Compared to seizure-resistant animals, in the RAS- condition, mate and female WARs, respectively, presented CSD-propagation impairment and facilitation, characterized, respectively, by lower and higher propagation velocities (P<0.05). In contraposition, in the RAS(+) condition, mate and female WARs displayed, respectively, higher and tower CSD-propagation rates, as compared to the corresponding controls. In some Wistar and WAR females, we determined estrous cycle status on the day of the CSD-recording as being either estrous or diestrous; no cycle-phase-related differences in CSD-propagation velocities were detected. In contrast to other epilepsy models, such as Status Epilepticus induced by pilocarpine, despite the CSD-velocity reduction, in no case was CSD propagation blocked in WARs. The results suggest a gender-related, estrous cycle-phase-independent modification in the CSD-susceptibility of WAR rats, both in the RAS(+) and RAS(-) situation. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Adult rats submitted to perinatal salt overload presented renin-angiotensin system (RAS) functional disturbances. The RAS contributes to the renal development and renal damage in a 5/6 nephrectomy model. The aim of the present study was to analyze the renal structure and function of offspring from dams that received a high-salt intake during pregnancy and lactation. We also evaluated the influence of the prenatal high-salt intake on the evolution of 5/6 nephrectomy in adult rats. A total of 111 sixty-day-old rat pups from dams that received saline or water during pregnancy and lactation were submitted to 5/6 nephrectomy (nephrectomized) or to a sham operation (sham). The animals were killed 120 days after surgery, and the kidneys were removed for immunohistochemical and histological analysis. Systolic blood pressure (SBP), albuminuria, and glomerular filtration rate (GFR) were evaluated. Increased SBP, albuminuria, and decreased GFR were observed in the rats from dams submitted to high-sodium intake before surgery. However, there was no difference in these parameters between the groups after the 5/6 nephrectomy. The scores for tubulointerstitial lesions and glomerulosclerosis were higher in the rats from the sham saline group compared to the same age control rats, but there was no difference in the histological findings between the groups of nephrectomized rats. In conclusion, our data showed that the high-salt intake during pregnancy and lactation in rats leads to structural changes in the kidney of adult offspring. However, the progression of the renal lesions after 5/6 nephrectomy was similar in both groups.
Resumo:
The genetic constitution of Afro-derived Brazilian populations is barely studied. To improve that knowledge, we investigated the AluYAP element and five Y-chromosome STRs (DYS19, DYS390, DYS391, DYS392, and DYS393) to estimate ethnic male contribution in the constitution of four Brazilian quilombos remnants: Mocambo, Rio das Ras, Kalunga, and Riacho de Sacutiaba. Results indicated significant differences among communities, corroborating historical information about the Brazilian settlement. We concluded that besides African contribution, there was a great European participation in the constitution of these four populations and that observed haplotype variability could be explained by gene flow to quilombos remnants and mutational events in microsatellites (STRs). Am. J. Hum. Biol. 21:354-356, 2009. (C) 2009 Wiley-Liss, Inc.